Effects of Barrier Layer on the Electrical Property of Spin Coated Sn – Sb Oxide Films on Glass

Jump To References Section

Authors

  • Department of Chemistry, Krishnath College, Berhampore, Murshidabad - 742101, West Bengal ,IN

DOI:

https://doi.org/10.18311/jsst/2015/4395

Keywords:

ATO Film, Electrical Properties, Spin Coating, Sol-Gel.

Abstract

Antimony doped tin oxide films of two different compositions (10 and 30 atom % of Sb) were deposited on various glass substrates by sol-gel spinning technique. Three types of glass substrates, namely, bare soda lime silica (SLS) glass, barrier silica layer coated soda lime glass and pure silica glass were chosen. Phase identification and measurements of electrical properties of the deposited films were carried out. Along with normal cassiterite SnO2 phase, presence of monoclinic Na3SbO4 could also be identified in case of films deposited on bare SLS glass substrate clearly indicating the migration of Na+ ion from substrate to the film during annealing treatment. Absence of Na3SbO4 phase in the films deposited on silica coated SLS glass substrate implies the effectiveness of the barrier silica layer in preventing the Na+ ion migration into the film. This is also supported by the fact that the films deposited on barrier layer coated substrate exhibit superior conductance property than those deposited on the substrate without having any barrier layer. This is because, presence of the acceptor Na+ ion in the film decreases the carrier concentration of the latter.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-12-01

How to Cite

De, A. (2015). Effects of Barrier Layer on the Electrical Property of Spin Coated Sn – Sb Oxide Films on Glass. Journal of Surface Science and Technology, 31(3-4), 170–175. https://doi.org/10.18311/jsst/2015/4395

 

References

A. V. Tadeev, G. Delabouglise and M. Labeau, Thin Solid Films, 337, 163 (1999).

N. Srinvasa Mury and S. R. Jawalekar, Thin Solid Films, 108, 277 (1983).

H. L. Ma, D. H. Zhang, S. Z. Win, S. Y. Li and Y. P. Chen, Sol. Ener. Mater. 40, 371 (1996).

A. Chaturvedi, V. N. Mishra, R. Dwivedi and S. K. Srivatava, Microelectr. J., 31, 283 (2000).

K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102, 1 (1983).

R. Banerjee and D. Das, Thin Solid Films, 149, 291 (1987).

C. F. Wan, R. D. McGrath, W. F. Keenan and S. N. Frank, J. Electrochem. Soc., 36, 1459 (1989).

V. Vasu and A. Subrahmanyam, Thin Solid Films, 202, 283 (1991).

C. H. Lee and S. H. Liu, Thin Solid Films, 219, 170 (1993).

M. Ippommatsu and H. Sasaki, J. Electrochem. Soc., 136, 2123 (1989).

T. D. Senguttuvan and L. K. Malhotra, Thin Solid Films, 289, 22 (1996).

K. Y. Rajpure, M. N. Kusumade, M. N. Neumann-Spallart and C. H. Bhosale, Mater. Chem. Phys., 64, 184 (2000).

B. Thangaraju, Thin Solid Films, 402, 71 (2002).

C. Terrier, J. P. Chatelon, R. Berjoan and J. A. Roger, Thin Solid Films, 263, 37 (1995).

B. Orel, U. Lavrencic-Stanger, Z. Crnjak-Orel, P. Bukovec and M. Kosec, J. Non-Cryst. Solids, 167, 272 (1997).

J. Liu, E. Rädlein, G. H. Frischat, Phys. Chem. Glasses, 40, 282 (1999).

H. Rumpel et al. and Z. Naturforsch, B:Anorg. Chem., Org. Chem., 33 (1978).

B. Schwedes and R. Hoppe, Z Anorg. Allg. Chem., 393, 136 (1972).

C. Terrier, J. P. Chatelon and J. A. Roger, Thin Solid Films, 295, 95 (1997).

A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale and K. Y. Rajpure, Journal of Semiconductors, 32, 102001 (2011).

T. M. Hammad and N. K. Hejazy, Int. Nano Lett., 1, 123 (2011).