Emergence of Zebrafish as a Biomarker for Pesticide Poisoning in Forensic Toxicology Research


  • Gujarat Forensic Sciences University, Laboratory of Analytical and Molecular Toxicology (Forensic Chemistry and Toxicology Laboratory), Institute of Forensic Science, Gandhinagar, Gujarat, 382007, India
  • Jai Research Foundation, Department of Ecotoxicology, Vapi, Gujatrat, 396105, India


Forensic toxicology is the branch of forensic science which utilizes toxicology, pharmacology and analytical chemistry to help in legal investigations of suicidal, homicidal and accidental poisoning cases. Accidental poisoning cases related to occupational exposure of pesticides are also very common. Zebrafish is a versatile model organism that has been used as a model organism in different field of science, has various practical advantages over other vertebrate models. Present review summarizes the effects of pesticides and the use of adult zebrafish as a model organism in forensic toxicology research to understand the symptoms/effects and mechanism of pesticide poisoning.


Forensic Science, Forensic Toxicology, Oxidative Stress, Pesticide Poisoning, Zebrafish.

Subject Discipline

Molecular Toxicology

Full Text:


Vaidya YP, Hulke SM. Study of trends of poisoning in thecases reported to government hospital, Yavatmal. ChronYoung Sci. 2012; 63-67.

Sankararamakrishnan N, Sharma AK, Sanghi R. Organochlorine and organophosphorous pesticide residuesin ground water and surface waters of Kanpur, UttarPradesh, India. Environ Int. 2005; 31:11

–20.https://doi.org/10.1016/j.envint.2004.08.001PMid:156077853. Shukla G, Kumar A, Bhanti, Joseph PE, Taneja A. Organochlorine pesticide contamination of ground waterin the city of Hyderabad. Environ Int. 2006; 244–7.https://doi.org/10.1016/j.envint.2005.08.027 PMid:16183122

Food and agriculture organization of the United Nations.International Code of Conduct on the Distribution and Useof Pesticides. 2002.

Vinay P, Shubha S, Rao S, Charmaine S, Ashwini K, RohithV. A case of organophosphate poisoning presenting withseizure and unavailable history of parenteral suicideattempt. J Emerg Trauma Shock. 2011; 4:132–4. https://doi.org/10.4103/0974-2700.76825 PMid:21633583PMCid:PMC3097564

Kumar A, Verma A, Kumar A. Accidental human poisoningwith a neonicotinoid insecticide, imidacloprid: a rare reportfrom rural India with a brief review of literature. EgyptJ Forensic Sci. 2013; 3:123–6. https://doi.org/10.1016/j.ejfs.2013.05.002

Agency for Toxic Substances and Disease Registry(ATSDR). Toxicological profile for Atrazine U.S. Atlanta,GA: Department of Health and Human Services PublicHealth Services; 2003.

Battaglin WA, Rice CK, Foazio MJ, Salmons S, Barry RX. The occurrence of glyphosate, atrazine, and other pesticidesin vernal pools and adjacent streams in Washington, DC,Maryland, Iowa and Wyoming 2005–2006. Environ MonitAssoc. 2008; 155:281–307.https://doi.org/10.1007/s10661008-0435-y PMid:18677547

Weber GJ, Sepulveda MS, Peterson SM, Lewis SS, FreemanJL. Transcriptome alterations following developmentalatrazine exposure in zebrafish are associated withdisruption of neuroendocrine and reproductive systemfunction, cell cycle, and carcinogenesis. Toxicol Sci. 2013;132(2):458–66. https://doi.org/10.1093/toxsci/kft017PMid:23358194 PMCid:PMC3595526

Edmund D, Juventus BZ, Ken S. Acute atrazine foodpoisoning in Shaibupe: A farming community in NorthernGhana. World Journal of Medical and Surgical Case ReportsWorld. J Med Surg Case Rep. 2013; 2:90–4.

Cooper RL, Stoker TE, Tyrey L, Goldman JM, McElroy WK. Atrazine disrupts the hypothalamic control of pituitaryovarianfunction. Toxicol Sci. 2000; 53:297–307.https://doi.org/10.1093/toxsci/53.2.297 PMid:10696778

McMullin TS, Andersen ME, Nagahara A, LundTD, Pak T, Handa RJ, Hanneman WH. Evidence that atrazine and diaminochlorotriazine inhibit theestrogen/progesterone induced surge of luteinizinghormone in female Sprague-Dawley rats withoutchanging estrogen receptor action. Toxicol Sci. 2004;79:278–86.https://doi.org/10.1093/toxsci/kfh127PMid:15056801

Eldridge JC, Wetzel LT, Tyrey L. Estrous cycle patterns ofSprague-Dawley rats during acute and chronic atrazineadministration. Reprod Toxicol. 1999; 13:491-499. https://doi.org/10.1016/S0890-6238(99)00056-8

Santa MC, Monero J, Lopez-Campos JL. Hepatotoxicityinduced by the herbicide atrazine in the rat. J Anal Toxicol. 1987; 7:373–8.

EPA. Twenty-four month combined chronic oral toxicitystudy of rats utilizing atrazine technical. Twelve monthinterim report for toxigenics study 410-1102. U.S. Environmental Protection Agency. EPA TRID. 1984. 4426010-19.

Beuret CJ, Zirulnik F, Gimenez MS. Effect of the herbicideglyphosate on liver lipid peroxidation in pregnant rats andtheir fetuses. Reprod. Toxicol. 2005; 19(4):501–4. https://doi.org/10.1016/j.reprotox.2004.09.009 PMid:15749264

WHO. Guidelines for drinking-water quality. Vol. 1. 2nded. World Health Organization; 1993.

Wang JJ, Cheng WX, Ding W, Zhi-Mo Z. The effect of theinsecticide dichlorvos on esterase activity extracted fromthe psocids, Liposcelis bostrychophila and L. entomophila. J Insect Sci. 2004; 4(1):23. https://doi.org/10.1093/jis/4.1.23PMid:15861238 PMCid:PMC528883

Kaur I, Jayashree K, Hiranandani M, Singhi SC. Severeorganophosphate poisoning in a neonate. Indian Pediatr. 1996; 33(6):517–9. PMid:9019442

Chuiko GM. Comparative study of acetylcholinesteraseand butyrylcholinesterase in brain and serum of severalfreshwater fish: Specific activities and in vitro inhibitionby DDVP, an organophosphorus pesticide. Comp BiochemPhysiol C Toxicol Pharmacol. 2000; 127:233–42. https://doi.org/10.1016/S0742-8413(00)00150-X

Eroğlu S, Pandir D, Uzun FG, Bas H. Protective role ofvitamins C and E in diclorvos-induced oxidative stressin human erythrocytes in vitro. Biol Res. 2013; 46:33–8. https://doi.org/10.4067/S0716-97602013000100005PMid:23760412

Das YT, Taskar PK, Brown HD, Chattopadhyay SK. Exposureof professional pest control operator to dichlorvos (DDVP)and residue on house structures. Toxicol Lett. 1983; 17:95–9. https://doi.org/10.1016/0378-4274(83)90042-5

Celik I, Suzek H. Effects of sub acute exposure of dichlorvosat sublethal dosages on erythrocytes and tissue antioxidantdefense systems and lipid peroxidation in rats. EcotoxicolEnviron Safe. 2009; 72:905–8. https://doi.org/10.1016/j. ecoenv.2008.04.007 PMid:18539328

Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D,Trebse P. Comparative toxicity of imidacloprid, of itscommercial liquid formulation and of diazinon to a nontargetarthropod, the microcrustacean Daphnia magna. Chemosphere. 2007; 68:1408–18. https://doi.org/10.1016/j.chemosphere.2007.04.015 PMid:17524455

Tomizawa M, Otsuka H, Miyamoto T. Pharmacologicalcharacteristics of insect nicotinic acetylcholine receptorwith its ion channel and the comparison of the effect ofnicotinoids and neonicotinoids. J Pestic Sci. 1995; 20:57–64. https://doi.org/10.1584/jpestics.20.57

Berny PJ, Florence BF, Videmann B, Thierry B. Evaluationof the toxicity of imidacloprid in wild birds. A new highperformance thin layer chromatography method for theanalysis of liver and crop samples in suspected poisoningcases. J Liq Chrom Rel Technol. 1999; 22:1547–59. https://doi.org/10.1081/JLC-100101750

Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP. Effect of imidacloprid on antioxidant enzymes and lipidperoxidation in female rats to derive it’s No ObservedEffect Level (NOEL). J Toxicol Sci. 2010; 35(4):577–81. https://doi.org/10.2131/jts.35.577 PMid:20686345

Bal R, Naziroglu M, Turk G, Yilmaz O, Kuloglu T,Etem E, Baydas G. Insecticide imidacloprid inducesmorphological and DNA damage through oxidativetoxicity on the reproductive organs of developingmale rats. Cell Biochem Funct. 2012; 30(6):492–9. https://doi.org/10.1002/cbf.2826 PMid:22522919

Moza PN, Hustert K, Feicht E, Kettrup A. Photolysisof imidacloprid in aqueous solution. Chemosphere. 1998; 36(3):497–502. https://doi.org/10.1016/S00456535(97)00359-7

Kaur H, Sangha GK, Khere KD. Imidacloprid inducedhistological and biochemical alterations in liver of femalealbino rats. Pest Biochem physiol. 2013; 105(1):1–4. https://doi.org/10.1016/j.pestbp.2012.10.001 PMid:24238282

Bhardwaj S, Srivastava MK, Kapoor U, Srivastava LP. A 90 days oral toxicity of imidacloprid in female rats:Morphological, biochemical and histopathologicalevaluations. Food Chem Toxicol. 2010; 48:1185–90.https://doi.org/10.1016/j.fct.2010.02.009 PMid:20146932

Velisek J, Stara A. Effect of thiacloprid on earlylife stages of common carp (Cyprinus carpio)Chemosphere. 2018; 197:481–7. https://doi.org/10.1016/j.chemosphere.2017.11.176 PMid:29232641

Yan SH, Wang JH, Zhu LS, Chen AM, Wang J. Thiamethoxam induces oxidative stress and antioxidantresponse in zebrafish (Danio Rerio) livers. Environ Toxicol. 2016; 31:2006–15.https://doi.org/10.1002/tox.22201PMid:26434662

Jhamtani RC, Dahiya MS, Agarwal R. Forensic toxicologyresearch to investigate Environmental hazard. JFSCI. 2017;(2):1–4.

Deck AT, Reinke EN, Wilfred C, McCain. Wildlife ToxicityAssessment for Aldrin and Dieldrin. Elsevier; 2015. p. 367–84.

Jhamtani RC, Shukla S, Dahiya MS, Agarwal A. Impact ofco-exposure of aldrin and titanium dioxide nanoparticlesat biochemical and molecular levels in Zebrafish. Environ Toxicol Pharmacol. 2018; 58:141–55. https://doi.org/10.1016/j.etap.2017.12.021 PMid:29331773

Radosavljevic T, Mladenovic D, Jakovljevic V, VucevicD, Rasic-Markovic A, Hrncic D, Djuric D, StanojlovicO. Oxidative stress in liver and red blood cells inacute lindane toxicity in rats. Hum Exp Toxicol. 2009;28(12):747–57.https://doi.org/10.1177/0960327109353055PMid:19880658

Kanbur M, Liman BC, Eraslan G, Altinordulu S. Effects ofcypermethrin, propetamphos, and combination involvingcypermethrin and propetamphos on lipid peroxidationin mice. Environ Toxicol. 2008; 23:473–79.https://doi.org/10.1002/tox.20360 PMid:18214882

Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C,Muffato M, Collins JE. The zebrafish reference genomesequence and its relationship to the human genome. Nature. 2013; 496:498–503. https://doi.org/10.1038/nature12111PMid:23594743 PMCid:PMC3703927

Amatruda JF, Shepard JL, Stern HM, Zon Li. Zebrafish as acancer model system. Cancer Cell. 2002; 1:229–31. https://doi.org/10.1016/S1535-6108(02)00052-1

Spitsbergen JM, Kent ML. The state of the art of the zebrafishmodel for toxicology and toxicologic pathology researchadvantagesand current limitations. Toxicol Pathol. 2003;31:62–87. https://doi.org/10.1080/01926230390174959PMid:12597434 PMCid:PMC1909756

Hill AJ, Teraoka H, Heidemann W, Peterson RE. Zebrafishas model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005; 86:6–19. https://doi.org/10.1093/toxsci/kfi110 PMid:15703261

Woudenberg BA, Wolterbeek A, Te Brake L, Snel C,Manke A, Rubingh C, De Groot D, Kroese D. A categoryapproach to predicting the developmental (neuro) toxicityof organotin compounds: the value of the Zebrafish (Daniorerio) Embryotoxicity Test (ZET). Reprod Toxicol. 2013;41:35–44.https://doi.org/10.1016/j.reprotox.2013.06.067PMid:23796951

De Jong E, Barenys M, Hermsen SA, Verhoef A, OssebdorpBC, Bessems JG, Piersma AH. Comparison of the mouseEmbryonic Stem cell Test: The rat Whole Embryo Cultureand the zebrafish embryotoxicity test as alternative methodsfor developmental toxicity testing of six 1,2,4-triazoles. Toxicol Appl Pharmacol. 2011; 253(2):103–11. https://doi.org/10.1016/j.taap.2011.03.014 PMid:21443896

Ali S, Van Mil HG, Richardson MK. Large-scale assessmentof the zebrafish embryo as a possible predictive model intoxicity testing. PLoS ONE. 2011; 6(6):e21076. https://doi.org/10.1371/journal.pone.0021076 PMid:21738604PMCid:PMC3125172

Parng C, Seng WL, Semino C, McGrath P. Zebrafish:A preclinical model for drug screening. AssayDrug Dev Technol. 2002; 1(Pt 1):41–8.https://doi.org/10.1089/154065802761001293 PMid:15090155

Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Oxidativeinjury caused by individual and combined exposure ofneonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep. 2017; 4:240–4. https://doi.org/10.1016/j. toxrep.2017.05.002 PMid:289596

PMCid:PMC561511648. Davies KJA. Oxidative stress, the paradox of aerobic lifeFree radical and Oxidative Stress: Environment, Drugs andFood Additives. London: Portland Press; 1995. p. 1–31. PMCid:PMC1050170

Livingstone DR. Contaminant-stimulated reactive oxygenspecies production and oxidative damage in aquaticorganisms. Mar Pollut Bull. 2001; 42:656–66. https://doi.org/10.1016/S0025-326X(01)00060-1

Blahova J, Plhalova L, Hostovsky M, Divisova L, DobsikovaR, Mikulikova I. Oxidative stress responses in zebrafish(Danio rerio) after subchronic exposure to Atrazine. FoodChem Toxicol. 2013; 61:82–5. https://doi.org/10.1016/j.fct.2013.02.041 PMid:23499751

Zhu LS, Shao B, Song Y, Xie H, Wang JH, Liu W, Hou XX. DNAdamage and effects on antioxidative enzymes in zebra fish(Danio rerio) induced by Atrazine. Toxicol Mech Meth. 2011;21(1):31–6. https://doi.org/10.3109/15376516.2010.529186PMid:21114466

Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J. Oxidative stressand DNA damage induced by imidacloprid in zebrafish(Danio rerio). J Agric Food Chem. 2015; 63(6):1856–62.

https://doi.org/10.1021/jf504895h PMid:25607931

Jhamtani RC, Shukla S, Dahiya MS, Agarwal A. Impact ofco-exposure of aldrin and titanium dioxide nanoparticlesat biochemical and molecular levels in Zebrafish. Environ Toxicol Pharmacol. 2018; 58:141–55. https://doi.org/10.1016/j.etap.2017.12.021 PMid:29331773

Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Biologicalalterations due to cocktail of pesticides in zebrafish. 25thAnnual Conference of Society of Toxicology (STOX),India 2015 on Challenges and Opportunities in ToxicologyResearch, Education and Product Safety Assessments;Palamur Biosciences Private Limited; 2015 Nov 19–21.

Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos,M. Molecular biomarkers of oxidative stress in aquaticorganisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf. 2006; 64:178–89. https://doi.org/10.1016/j.ecoenv.2005.03.013 PMid:16406578

Winston GW, Di Giulio RT. Prooxidant and antioxidantmechanisms in aquatic organisms. Aquat Toxicol. 1991;19:137–61. https://doi.org/10.1016/0166-445X(91)90033-6

Sukritha TH, Usharani MV. Effects of organophosphateson acute poisoning and acetylcholinestrase inhibition inzebrafish. Int J of Bioassays. 2013; 2(3):575–80.

Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Individualeffects of dichlorvos and imidacloprid induced oxidativestress in zebrafish. Oral Presentation at 36th AnnualConference of Society of Toxicology (STOX), India 2016during International Conference on New Insights andMultidisciplinary Approaches in Toxicological Studies. Amity Institute of Environmental Toxicology, Safety andManagement (AIETSM).

Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Imidaclopridand Atrazine Induced Oxidative Stress in Zebrafish. 104thIndian Science Conference Association; 2017b.

Rodríguez-Fuentes G, Rubio-Escalante FJ, Nore-aBarroso E, Escalante-Herrera KS, Schlenk D. Impacts ofoxidative stress on acetylcholinesterase transcription, andactivity in embryos of zebrafish (Danio rerio) followingChlorpyrifos exposure. Comp Biochem Physiol C ToxicolPharmacol. 2015; 172-173:19–25. https://doi.org/10.1016/j.cbpc.2015.04.003 PMid:25937383

Assis CR, Amaral IP, Castro PF, Carvalho LB, BezerraRS. Effect of dichlorvos on the acetylcholinesterase fromtambaqui (Colossoma macropomum) brain. EnvironToxicol Chem. 2007; 7:1451–3. https://doi.org/10.1897/06488R1.1

Chan JY, Chan SH, Dai KY, Cholinergic-receptorindependentdysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembranepotential and ATP depletion underlie necrotic cell deathinduced by the organophosphate poison mevinphos.

Neuropharmacology. 2006; 51:1109–19.https://doi.org/10.1016/j.neuropharm.2006.06.024 PMid:16984802

Bloom SE, Lemley AT, Muscarella DE. Potentiation ofapoptosis by heat stress plus pesticide exposure in stressresistant human B-lymphoma cells and its attenuationthrough interaction with follicular dendritic cells: rolefor c-Jun N-terminal kinase signaling. Toxicol Sci. 2006;89(1):214–23. https://doi.org/10.1093/toxsci/kfj021PMid:16237197

Kumar V, Gupta AK, Shukla RK, Tripathi VK, Jahan S, PandeyA, Srivastava A, Agrawal M, Yadav S, Khanna VK, Pant AB. Molecular mechanism of switching of TrkA/p75(NTR)signaling in monocrotophos induced neurotoxicity. SciRep. 2015; 15(5):14038.https://doi.org/10.1038/srep14038PMid:26370177 PMCid:PMC4570211

Agarwal R, Raisuddin S, Tewari S, Goel SK, Raizada RB,Behari JR. Evaluation of comparative effect of pre-andpost-treatment of selenium on mercury-induced oxidativestress, histological alterations, and metallothionein mRNAexpression in rats. J Biochem Mol Toxicol. 2010a; 24:123–35. PMid:20143455

Agarwal R, Goel SK, Chandra R, Behari JR. Role of vitaminE in preventing acute mercury toxicity in rat. EnvironToxicol Phar. 2010b; 29:70–8. https://doi.org/10.1016/j.etap.2009.10.003 PMid:21787585

Ceyhun SB, Ercument Aksakal, Birsen Kirim, KubraAtabeyoglu, Orhan Erdogan. Chronic toxicity of pesticidesto the mRNA expression levels of metallothioneinsand cytochrome P450 1A genes in rainbow trout. Toxicol Ind Health. 2012; 28:162–9.https://doi.org/10.1177/0748233711409482 PMid:21665904

Erdogan O, Saltuk B, Ceyhun, Ekinci D, Aksakal E. Impactof deltamethrin exposure on mRNA expression levelsof metallothionein A, B and cytochrome P450 1A inrainbow trout muscles. Gene. 2011; 484:13–7. https://doi.org/10.1016/j.gene.2011.05.026 PMid:21658436

Ozdemir S, Altun S, Arslan H. Imidacloprid exposure causethe histopathological changes, activation of TNF-α, iNOS,8-OHdG biomarkers, and alteration of caspase 3, iNOS,CYP1A, MT1 gene expression levels in common carp(Cyprinus carpio L.). Toxicol Rep. 2018; 5:125–33. https://doi.org/10.1016/j.toxrep.2017.12.019 PMid:29321977PMCid:PMC5751999


  • There are currently no refbacks.