Isoprenaline Induced Hepatic Alterations and Modulation by Hydroalcoholic Extract of Juglans regia hull in Wistar Rats


Affiliations

  • Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, Mirzapur, Uttar Pradesh, 231001, India

Abstract

The present study aimed at determining isoprenaline (ISO) induced hepatic alterations and effect of hydroalcoholic extract of Juglans regia hull supplementation in modulating those alterations in Wistar rats. Various biochemical, histopathological and antioxidant biomarkers in hepatic tissue viz. transferases (aspartate and alanine aminotransferases), Total Plasma Proteins (TPP), Albumins (ALB), Total Antioxidant Status (TAS), Total Thiols (TTH), Catalase (CAT), Superoxide Dismutase (SOD), Acetylcholinesterase (AChE), Arylesterase (AE), Glutathione Peroxidase (GPX) and Glutathione Reductase (GR), and cellular damage indicators viz. Malondialdehyde (MDA) and Advanced Oxidation Protein Product (AOPP) were assessed. Intra-peritoneal administration of ISO produced significant increase in aspartate aminotransferase, AChE, MDA and AOPP levels and reduced TPP, ALB, TTH, TAS, AE and GPX, activities in hepatic tissue of rats. Histopathologically, the liver sections of ISO treated rats revealed congestion, vacuolar degeneration and necrosis of liver parenchyma, bile duct hyperplasia and edema along with cellular infiltration in portal triad areas. Pretreatment with hull extract restored TAS, AOPP, AChE, CAT, AE activities and significantly reduced severity of histomorphological changes in hepatic tissue of ISO treated rats. The protective effect may be attributed to phytochemical constituents present in hull. Overall, our results show that hydroalcoholic extract of J. regia hull confers partial protection to hepatic tissue against ISO induced oxidative changes in Wistar rats.

Keywords

Hepatic Tissue, Isoprenaline, Juglans regia, Oxidative Damage

Subject Discipline

Pharmacology; Bioprospection

Full Text:

References

Sanchez-valle V, Chavez-tapia NC, Uribe M, Mendezsanchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr Med Chem. 2012; 19(28):4850–60. PMid: 22709007. https://doi. org/10.2174/092986712803341520

Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci .2015; 16(11):26087–124. PMid: 26540040 PMCid: PMC4661801. https://doi.org/10.3390/ ijms161125942

Peng HJ, Dai DZ, Ji H, Dai Y. The separate roles of endothelin receptors participate in remodeling of matrix metalloproteinase and connexin 43 of cardiac fibroblasts in maladaptive response to isoproterenol. Eur J Pharmacol .2010; 634(1-3):101–6. PMid: 20167215. https://doi.org/10.1016/j.ejphar.2010.02.001

Barni S, Speziali M, De piceis polver P, Fenoglio C. Effects of isoprenaline treatment on the rat liver parenchyma. Ultrastructural investigations. Acta Anat (Basel). 1981; 109(2):184–96. PMid: 7248036. https://doi. org/10.1159/000145382

Ghosh PM, Shu ZJ, Zhu B, Lu Z, Ikeno Y, Barnes JL, Yeh C.K, Zhang BX, Katz MS, Kamat A. Role of β-adrenergic receptors in regulation of hepatic fat accumulation during aging. J Endocrinol. 2012; 213(3):251–61. PMid: 22457517 PMCid: PMC3539306. https://doi.org/10.1530/JOE-11-0406

Hasanzadeh-moghadam M, Khadem-ansari MH, Farjah GH, Rasmi Y. Hepatoprotective effects of betaine on liver damages followed by myocardial infarction. Vet Res Forum. 2018; 9(2):129–35.

Rasool MK, Sabina EP, Ramya SR, Preety P, Patel S, Mandal N, Mishra PP, Samuel J. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J Pharm Pharmacol. 2010; 62(5):638–43. PMid: 20609067. https://doi.org/10.1211/jpp.62.05.0012

Verma PK, Raina R, Sultana M, Prawez S, Jamwal N. Hepatoprotective mechanisms of Ageratum conyzoides L. on oxidative damage induced by acetaminophen in Wistar rats. Free Radic Antioxidants. 2013; 3(2):73–6. https://doi. org/10.1016/j.fra.2013.05.009

Eapen CE. The liver: Oxidative stress and dietary antioxidants. Ind J Med Res. 2019; 149(10):81. PMCid: PMC6507547. https://doi.org/10.4103/ijmr.IJMR_2098_18

Lin EY, Chagnaadorj A, Huang SJ, Wang CC, Chiang YH, Cheng CW. Hepatoprotective activity of the ethanolic extract of thunb. against oxidative stress-induced liver injury. Evid Based Complement Alternat Med .2018:4130307. PMid: 30416531 PMCid: PMC6207887. https://doi.org/10.1155/2018/4130307

Lakshmi T, Sri Renukadevi B, Senthilkumar S, Haribalan P, Parameshwari R, Vijayaraghavan R, Rajeshkumar S. Seed and bark extracts of Acacia catechu protects liver from acetaminophen induced hepatotoxicity by modulating oxidative stress, antioxidant enzymes and liver function enzymes in Wistar rat model. Biomed Pharmacother .2018; 108:838–44. PMid: 30372895. https://doi.org/10.1016/j. biopha.2018.08.077

Tian Z, Jia H, Jin Y, Wang M, Kou J, Wang C, Rong X, Xie X, Han G, Pang, X. Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr Res. 2019: 63. PMid: 31024225 PMCid: PMC6475127. https://doi.org/10.29219/fnr.v63.1667

Almeida IF, Fernandes E, Lima JLFC, Costa PC, Bahia MF. Walnut (Juglans regia) leaf extracts are strong scavenger of pro-oxidant reactive species. Food Chem. 2008; 106(3):1014–20. https://doi.org/10.1016/j. foodchem.2007.07.017

Eidi A, Moghadam JZ, Mortazavi P, Rezazadeh S, Olamafar S. Hepatoprotective effects of Juglans regia extract against CCl4-induced oxidative damage in rats. Pharm Biol. 2013; 51(5):558–65. PMid: 23373712. https://doi.org/10.3109/13 880209.2012.749920

Croitoru A, Ficai D, Craciun L, Ficai A, Andronescu E. Evaluation and exploitation of bioactive compounds of walnut, Juglans regia. Curr Pharm Des. 2019; 25(2):119–31. PMid: 30931854. https://doi.org/10.2174/13816128256661 90329150825

Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L, Pereira JA. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol. 2008; 46(7):2326–31. PMid: 18448225. https://doi.org/10.1016/j.fct.2008.03.017

Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A review study on phytochemistry and pharmacology applications of plant. Pharmacogn Rev. 2017; 11(22):145–52. PMid: 28989250 PMCid: PMC5628521. https://doi.org/10.4103/phrev.phrev_10_17

Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jeronimo C, Silva BM. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol. 2010; 48(1):441–7. PMid: 19883717. https://doi. org/10.1016/j.fct.2009.10.043

Al-Snafi AE. Chemical constituents, nutritional, pharmacological and therapeutic importance of Juglans regia-A review. IOSR J Pharmacy. 2018; 8(11):1–21.

Gupta A, Behl T, Panichayupakaranan P. A review of phytochemistry and pharmacology profile of Juglans regia. Obesity Med. 2019; 16:100142. https://doi.org/10.1016/j. obmed.2019.100142

Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochem. 2003; 63(7):795– 801. https://doi.org/10.1016/S0031-9422(03)00333-9

Voss G, Sachsse K. Red cell and plasma cholinesterase activities in microsamples of human and animal blood determined simultaneously by a modified acetylthiocholine-DTNB procedure. Toxicol Appl Pharmacol. 1970; 16(3):764–72. https://doi.org/10.1016/0041-008X(70)90082-7

Burlina A, Michielin E, Galzigna L. Characteristics and behaviour of arylesterase in human serum and liver. Eur J Clin Invest. 1977; 7(1):17–20. PMid: 402272. https://doi.org/10.1111/j.1365-2362.1977.tb01564.x

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10):1231–7. https://doi.org/10.1016/ S0891-5849(98)00315-3

Motchnik PA, Frei B, Ames BN. Measurement of antioxidants in human blood plasma. Meth Enzymo.l 1994; 234:269–79. https://doi.org/10.1016/0076-6879(94)34094-3

Aebi HE. Catalase, Bergmeyer HU, eds. Methods of Enzymatic Analysis. New York: Academic Press; 1983. p. 276–86.

Hafeman DG, Sunde RA, Hoekstra WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr. 1974; 104(5):580–7. PMid: 4823943. https://doi.org/10.1093/jn/104.5.580

Marklund S, Marklund G. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47:469–74. PMid: 4215654. https://doi.org/10.1111/j.1432-1033.1974. tb03714.x

Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975; 250(14):5475–80.

Shafiq-ur-rehman. Lead-induced regional lipid peroxidation in brain. Toxicol Lett. 1984; 21:333–7. https:// doi.org/10.1016/0378-4274(84)90093-6

Witko-sarsat V, Friedlander M, Capeillere-blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J. Jungers P. Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996; 49(5):1304–13. PMid: 8731095. https://doi.org/10.1038/ki.1996.186

Ha KT, Yoon SJ, Choi D.Y, Kim DW, Kim JK, Kim CH. Protective effect of Lycium chinense fruit on carbon tetrachloride-induced hepatotoxicity. J Ethnopharmacol. 2005; 96(3):529–35. PMid: 15619574. https://doi. org/10.1016/j.jep.2004.09.054

Lad H, Bhatnagar D. Modulation of oxidative stress mediators in the liver of adjuvant induced arthritic rats by Nyctanthes arbor tristis. Clin Phytosci. 2017; 3(1): https:// doi.org/10.1186/s40816-016-0041-4

Yang Y, Wang J, Zhang Y, Li J, Sun W. Black sesame seeds ethanol extract ameliorates hepatic lipid accumulation, oxidative stress, and insulin resistance in fructoseinduced nonalcoholic fatty liver disease. J Agric Food Chem. 2018; 66(40):10458–69. PMid: 30244573. https://doi.org/10.1021/acs.jafc.8b04210

Xiang Q, Liu Z, Wang Y, Xiao H, Wu W, Xiao C, Liu X. Carnosic acid attenuates lipopolysaccharide-induced liver injury in rats via fortifying cellular antioxidant defense system. Food Chem Toxicol. 2013; 53:1–9. PMid: 23200889. https://doi.org/10.1016/j.fct.2012.11.001

Murad S, Arain AQ, Saif S, Shaikh DM, Ghaffar A, Murad JS, Shekhzaid, Tufail S. Juglans regia contain polyunsaturated fats, and essential fatty acid Omega-3. Austin J Pharmacol Ther. 2019; 7(2):1115.

Fink A, Rufer CE, Le Grandois J, Roth A, Aoude-Werner D, Marchioni E, Bub A, Barth S.W. Dietary walnut oil modulates liver steatosis in the obese Zucker rat. Eur J Nutr. 2014; 53(2):645–60. PMid: 23942585 PMCid: PMC3925294. https://doi.org/10.1007/s00394-013-0573-z

Aydın S, Gokce Z, Yılmaz O. The effects of Juglans regia L. (walnut) extract on certain biochemical parameters and in the prevention of tissue damage in brain, kidney and liver in CCl4 applied Wistar rats. Turk J Biochem. 2015; 40(3):241–50. https://doi.org/10.1515/tjb-2015-0009

Hosseini SA, Mohammadi J, Delaviz H, Shariati M. Effect of Juglans regia and Nasturtum officinalis on biochemical parameters following toxicity of kidney by CCl4 in Wistar rats. Electron J Gen Med. 2018; 15(3):em30. https://doi. org/10.29333/ejgm/86193

Prince PS, Sathya B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats. Eur J Pharmacol. 2010; 635(1-3):142–8. PMid: 20206157. https://doi.org/10.1016/j.ejphar.2010.02.019

Rahmathulla SBM, Maruthi E, Bheemewsaraiah K, Manjunatha S, Devi KL. Effect of Tribulus terrestris (L.) on liver in Isoproterenol-Induced Myocardial Infarction. Int J Res Biochem Biophy. 2012; 2(4):10–2.

Feng Y, Wang N, Ye X, Li H, Feng Y, Cheung F, Nagamatsu T. Hepatoprotective effect and its possible mechanism of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced chronic liver hepatotoxicity in rats. J Ethnopharmacol. 2011; 138(3):683–90. PMid: 21963555. https://doi.org/10.1016/j.jep.2011.09.032

Mahajan L, Verma PK, Raina R, Sood S. Toxic effects of imidacloprid combined with arsenic: Oxidative stress in rat liver. Toxicol Ind Health. 2018; 34(10):726–35. PMid: 30033815. https://doi.org/10.1177/0748233718778993

Ekam VS, Udosen EO. Total protein, albumin and globulin levels following the administration the administration of activity directed fractions of Vernonia amygdalina during acetaminophen induced hepatotoxicity in wistar albino rats. Global J Pure Applied Sci. 2012; 18(1/2):25–9.

García-ayllon MS, Millan C, Serra-basante C, Bataller R, Saez-valero J. Read through acetylcholinesterase is increased in human liver cirrhosis. PLoS ONE. 2012; 7(9):e44598. PMid: 23028565 PMCid: PMC3441564. https://doi. org/10.1371/journal.pone.0044598

Liao F, Zhu XY, Wang YM, Zhao YS, Zhu LP, Zuo YP. Correlation of serum arylesterase activity on phenylacetate estimated by the integrated method to common classical biochemical indexes of liver damage. J Zhejiang Univ Sci B. 2007; 8(4):237–41. PMid: 17444597 PMCid: PMC1838837. https://doi.org/10.1631/jzus.2007.B0237

Kilic SS, Aydin S, Kilic N, Erman F, Aydin S, Celik I. Serum arylesterase and paraoxonase activity in patients with chronic hepatitis. World J Gastroenter. 2005; 11(46):7351–4. PMid: 16437641 PMCid: PMC4725136. https://doi. org/10.3748/wjg.v11.i46.7351

Aslan M, Horoz M, Nazligul Y, Bolukbas C, Bolukbas FF, Selek S, Akson N, Erel O. Serum paraoxonase and arylesterase activities for the evaluation of patients with chronic hepatitis. Int J Clin Pract. 2008; 62(7):1050–5. PMid: 17887991. https://doi.org/10.1111/ j.1742-1241.2006.01206..x

Oguz S, Kanter M, Erboga M, Erenoglu C. Protective effects of thymoquinone against cholestatic oxidative stress and hepatic damage after biliary obstruction in rats. J Mol Histol. 2012; 43(2):151–9. PMid: 22270828. https://doi. org/10.1007/s10735-011-9390-y

Dusek J, Ostadal B. Isoproterenol-induced damage to the liver of chick embryos. Physiol Bohemoslov. 1984; 33(1):67–73.


Refbacks

  • There are currently no refbacks.