Pharmacological Effect of Androgrophis paniculata in Ammonium Acetate Induced Hyperammonemia: A Dose-dependent Study

Jump To References Section

Authors

  • Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore – 641021, Tamil Nadu ,IN
  • Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore – 641021, Tamil Nadu ,IN
  • Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore – 641021, Tamil Nadu ,IN
  • Department of Zoology, PSGR Krishnammal College for Women, Coimbatore – 641004, Tamil Nadu ,IN
  • Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu ,IN
  • Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore – 641021, Tamil Nadu ,IN
  • Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore – 641021, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/ti/2021/v28i1/26541

Keywords:

Ammonium Acetate, Androgrophis paniculata, Antioxidant, Histopathology
Toxicology

Abstract

Androgrophis paniculata is a commonly used medicinal plant in south Asian countries including India and Sri Lanka. Ammonium acetate was used as a food preservation reagent in food industries. This study is focused on the pharmacological effect of Androgrophis paniculata on the functioning of the liver, kidney and brain in ammonium acetate induced hyperammonemia rats. The hyperammonemia is induced by intraperitoneal injection of ammonium acetate 100 mg/kg body weight thrice a week for eight consecutive weeks. Hyperammonemia rats are supplemented orally with Androgrophis paniculata at 50 and 100 mg/kg body weight doses. Hyperammonemic rats showed increased circulating levels of ammonia, uric acid, creatinine, bilirubin, nitric oxide, lipid profile, enzymatic liver marker, sodium/potassium-ATPase and reduced level of urea. Androgrophis paniculata supplementation prevented the histopathological alteration of a vital organ such as liver, brain and kidney tissue. The pharmacological effects are more pronounced in rats treated with 100 mg/kg b.w of Androgrophis paniculata and comparable with the standard drug sodium benzoate drug-treated rats.

Downloads

Download data is not yet available.

Published

2021-03-24

How to Cite

Chandran, H., Kumar Anandhan, D., Gunasekaran, P., Babu, V., Natesan, V., Thilagar, G., & Arumugam, R. (2021). Pharmacological Effect of <i>Androgrophis paniculata</i> in Ammonium Acetate Induced Hyperammonemia: A Dose-dependent Study. Toxicology International, 28(1), 91–101. https://doi.org/10.18311/ti/2021/v28i1/26541

Issue

Section

Original Research
Received 2020-12-16
Accepted 2021-01-28
Published 2021-03-24

 

References

Ramakrishnan A, Vijayakumar N, Renuka M. Effect of naringin on ammonium chloride induced hyperammonemic rats: A dose-dependent study. Journal of Acute Medicine. 2016; 6:55–60. https://doi.org/10.10 16/j.jacme.2016.08.001 DOI: https://doi.org/10.1016/j.jacme.2016.08.001

Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002; 67:259–79. https://doi.org/10.1016/s0301-0082(02)00019-9 DOI: https://doi.org/10.1016/S0301-0082(02)00019-9

Albrecht J, Dolinska M. Glutamine as a pathogenic factor in hepatic encephalopathy. J Neurosci Res. 2001; 65:1–5. PMid: 11433423. https://doi.org/10.1002/jnr.1121 DOI: https://doi.org/10.1002/jnr.1121

Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V. Superoxide production and antioxidant enzymes in ammonium intoxication in rats. Free Radic Res. 1997; 27:637–44. PMid: 9455699. https://doi.org/10.3109/10715769709097867 DOI: https://doi.org/10.3109/10715769709097867

Kosenko E, Montoliu C, Giordano G, Kaminsky Y, Venediktova N, Buryanov Y, Felipo V. Acute ammonia intoxication induces an NMDA receptor-mediated increase in poly (ADP-ribose) polymerase level and NAD metabolism in nuclei of rat brain cells. J Neurochem. 2004; 89:1101–10. PMid: 15147502. https://doi.org/10.1111/j.1471-4159.2004.02426.x DOI: https://doi.org/10.1111/j.1471-4159.2004.02426.x

Kokate CK, Puroht AP, Gokhale SB. Pharmacognosy. Pune, India: Nirali Publication; 2006; 34:251–2.

Calabrese C. Berman SH, Babish JGM, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. A phase 1 trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000; 14:333–8. https://doi.org/10.1002/1099-1573(200008)14:5 <333::AID-PTR584>3.0.CO;2-D DOI: https://doi.org/10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D

Vojdani A, Erde J. Regulatory T cells, a potent immunoregulatory target for CAM researchers: Modulating tumor immunity, autoimmunity and allore active immunity (III). eCAM. 2006; 3:309–16. PMid: 16951715 PMCid: PMC1513145. https://doi.org/10.109 3/ecam/nel047 DOI: https://doi.org/10.1093/ecam/nel047

Geethangili M, Rao YK, Fang SH, Tzeng YM. Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in Jurkat cells. Phytother Res. 2008; 22:1336– 41. PMid: 18546141. https://doi.org/10.1002/ptr.2493 DOI: https://doi.org/10.1002/ptr.2493

Hidalgo MA, Romero A, Figueroa J, Cortes P, Hancke JL, Burgos RA. Andrographolide interferes with binding of nuclear factor-kB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005; 144:680–6. PMid: 15678086 PMCid: PMC1576048. https://doi.org/ 10.1038/sj.bjp.0706105 DOI: https://doi.org/10.1038/sj.bjp.0706105

Zhao F, He EQ, Wang L, Liu K. Anti-tumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level. J Asian Nat Prod Res. 2008; 10:473–9. PMid: 18464090. https://doi.org/10.1080/10286020801948334 DOI: https://doi.org/10.1080/10286020801948334

Rao NK. Anti hyper glycemic and renal protective activities of Andrographis paniculata roots chloroform extract. IJPT. 2006; 5:47–50.

Najib N Nik Rahman A, Furuta T, Kojima S, Takane K, Ali Mohd M. Antimalarial activity of extracts of Malaysian medicinal plants. J Ethnopharmacol. 1999; 64:249–54. https://doi.org/10.1016/s0378-8741(98)00135-4 DOI: https://doi.org/10.1016/S0378-8741(98)00135-4

Kamal R, Gupta RS, Lohiya NK. Plant for male fertility regulation. Phytother Res. 2003; 17:579–90. PMid: 12820222. https://doi.org/10.1002/ptr.1320 DOI: https://doi.org/10.1002/ptr.1320

Lena JP, Subramanian P. Evaluation of the antiperoxi dative effects of melatonin in ammonium acetate-treated Wistar rats. Pol J Pharmacol. 2003; 55:1031–6.

Onasanwo SA, Pal A, George B, Olaleye SB. Pharmacological and toxicity studies of the crude extracts and fractions of Hedrantherabarteri leaf in rats and mice. Journal of Biomedical Research. 2008; 11:311–21. https://doi.org/10.4314/ajbr.v11i3.50746 DOI: https://doi.org/10.4314/ajbr.v11i3.50746

Wolheim DF. Preanalytical increase of ammonia in blood specimens from healthy subjects. ClinChem. 1984; 30:906–8.

Fiske CH, Subbarow Y. The calorimetric determination of phosphorous. J Biol Chem. 2004; 98:159–62. https:// doi.org/ 10.1042/bj0260292

Brown H. The determination of uric acid in human blood. J Biol Chem.1945; 158:601–8. https://doi.org/10.1016/ 0305-0491(78)90257-2 DOI: https://doi.org/10.1016/S0021-9258(19)51336-9

Bonsnes RW, Taussky HH. On the colorimetric determination of creatinine by the Jaffee reaction. J Biol Chem. 1945; 158:581–91. https://doi.org/10.1016/S0021-9258(19)51334-5 DOI: https://doi.org/10.1016/S0021-9258(19)51334-5

Mallo YHT, Evelyn KA. The determination of bilirubin with the photo-metric colorimeter. J Biol Chem. 1937; 119:481–90. https://doi.org/10.12691/ajbr-2-4-1 DOI: https://doi.org/10.1016/S0021-9258(18)74392-5

Reitman S, Frankel AS. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28:56–63. PMid: 13458125. https://doi.org/10.10 93/ajcp/28.1.56 DOI: https://doi.org/10.1093/ajcp/28.1.56

King E, Armstrong AR. Determination of serum and bile phosphatase activity. CMAJ 1934; 31:376–81.

Rosalki SB, Rau D, Lehmann D, Prentice M. Determination of serum y-glutamyl transpeptidase activity and its clinical applications. Ann Clin Biochem. 1970; 7:143–7. https://doi.org/10.1177/000456327000700601 DOI: https://doi.org/10.1177/000456327000700601

Varley H, Gowenlock AH, Bell M. Practical Clinical Biochemistry. 4th ed, New Delhi: CBS Publishers; 2009.

Lund P. L-glutamine and L-glutamate: UV-method with glutaminase and glutamate dehydrogenase. H.U. Bergmeyer (Ed.). Methods of Enzymatic Analysis. 1985; 8:357–63.

Green LC. Wagner DA, Glogowski J, Skipper PL, Wishnok JK, Tannenbaum SR. Analysis of nitrate, nitrite and 15N in biological fluids. Analytical Biochemistry . 1982; 126(1):131–8. https://doi.org/10.10 16/0003-2697(82)90118-X DOI: https://doi.org/10.1016/0003-2697(82)90118-X

Nichans WG, Samuelson B. Formation of malondialde hyde from phospholipids arachidonate during micro somal lipid peroxidation. Eur J Biochem. 1968; 6:126–30. PMid: 4387188. https://doi.org/10.1111/j.1432-1033.19 68.tb00428.x DOI: https://doi.org/10.1111/j.1432-1033.1968.tb00428.x

Klein RA. The detection of oxidation in liposome preparation. Biochim Biophys Acta. 1979; 210:486–9. https://doi.org/10.1016/0005-2760(70)90046-9 DOI: https://doi.org/10.1016/0005-2760(70)90046-9

Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal Biochem. 1992; 202:384–7. https://doi.org/10.1016/0003 -2697(92)90122-n DOI: https://doi.org/10.1016/0003-2697(92)90122-N

Sinha AK. Colorimetric assay of catalase. Anal Bio chem. 1972; 47:389–94. https://doi.org/10.1016/0003- 2697(72)90132-7 DOI: https://doi.org/10.1016/0003-2697(72)90132-7

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82:70–7. https://doi.org/10.1016/0003- 9861(59)90090-6 DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974; 20:470–5. PMid: 4818200. https://doi.org/10.1093/clinchem/20.4.470 DOI: https://doi.org/10.1093/clinchem/20.4.470

Zilversmit DB, Davis AK. Microdetermination of phospholipids by TCA precipitation. J Lab Clin Med. 1950; 35:155–60.

McGowan MW, Artiss JD, Strandbergh DR, Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem.1983; 29:538–42. PMid: 6825269. https://doi.org/10.1093/clinchem/29.3.538 DOI: https://doi.org/10.1093/clinchem/29.3.538

Falhot K, Lund B, Falhot W. An easy colorimetric micro method for routine determination of free fatty acid in plasma. Clin Chim Acta. 1973; 46:105–11. https://doi.org/10.1016/0009-8981(73)90016-8 DOI: https://doi.org/10.1016/0009-8981(73)90016-8

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem. 1987; 162:156–9. PMid: 2440339. https://doi.org/10.1006/abio.1987.9999 DOI: https://doi.org/10.1016/0003-2697(87)90021-2

da Silva BV, Joao CM, Barreira M, Beatriz PP. Oliveira, natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, bioche mistry and protected-delivery technologies. Trends Food SciTechnol. 2016; 50:144–58. https://doi.org/10.101 6/j.tifs.2015.12.007 DOI: https://doi.org/10.1016/j.tifs.2015.12.007

Clemmesen J, Larsen F, Kondrup J, Hansen B, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999; 29:648–53. PMid: 10051463. https://doi.org/10.1002/hep.510290309 DOI: https://doi.org/10.1002/hep.510290309

Duncan BD. Multiple range tests for correlated and heteroscedastic means. Biometrics. 1957; 13:359–64. https://doi.org/10.2307/2527799 DOI: https://doi.org/10.2307/2527799

Ramakrishnan A, Renuka M, Amalan V, Senthilmurugan S, Vijayakumar N, Sung-Jin Kim. Molecular docking studies of natural compounds of naringin on enzymes involved in the urea cycle pathway in hyperammonemia. Tropical Journal of Pharmaceutical Research. 2020; 19:1037–43. https://doi.org/10.4314/tjpr.v19i5.19 DOI: https://doi.org/10.4314/tjpr.v19i5.19

Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clinical Pharmacology and Therapeutics. 2012; 92:321–31. PMid: 22871998. https://doi.org/10.1038/clpt.2012.112 DOI: https://doi.org/10.1038/clpt.2012.112

National urea cycle disorder foundation. What is a urea cycle disorder? 2009. www.nucdf.org/ucd.htm

Ramakrishnan A, Vijayakumar N, Renuka M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomedicine and Pharmacotherapy. 2016; 84:1717–26. PMid: 278364 65. https://doi.org/10.1016/j.biopha.2016.10.080 DOI: https://doi.org/10.1016/j.biopha.2016.10.080

Al-Mamary M, Al-Habori M, Al-aghbari AM, Basker MM. Investigation into the toxicological effects of Catha edulis leaves. A short term study in animals. Phyto theraphy Research. 2002; 16:127–32. PMid: 11933113. https://doi.org/ 10.12691/ajfn-8-2-2 DOI: https://doi.org/10.1002/ptr.835

Janbaz KH, Gilani AH. Studies on preventive and curative effects of berberine on chemical-induced hepatotoxicity in rodents. Fitoterapia. 2000; 71:25–33. https://doi.org/10.1016/s0367-326x(99)00098-2 DOI: https://doi.org/10.1016/S0367-326X(99)00098-2

Hanan H. Hagar. The protective effect of taurine against cyclosporine A-induced oxidative stress and hepato toxicity in rats. Toxicology Letters. 2004; 151:335–43. PMid: 15183458. https://doi.org/10.1016/j.toxlet.2004.03.002 DOI: https://doi.org/10.1016/j.toxlet.2004.03.002

Mayes PA, Bender PA. The citric acid cycle: The catabolism of AcetylCoA. Harper's illustrated Biochemistry (Murray R.K, Granner D.K, Mayes P.A & Rodwell V, editors). New York: Lange Medical Books Mc Graw Hill Companies; 2003:130–5.

Veronika H, Daniela O. Monosodium glutamate toxic effects and their implications for human intake: A Review. JMED Research. 2013; 1:1–12. https://doi.org/10.5171/2013.608765 DOI: https://doi.org/10.5171/2013.608765

Muriel P. Regulation of nitric oxide synthesis in the liver. J Appl Toxicology. 2000; 20:189–95. https://doi.org/10. 1002/(SICI)1099-1263(200005/06)20:3<189:AID JAT632 >3. 0. CO ;2-8 DOI: https://doi.org/10.1002/(SICI)1099-1263(200005/06)20:3<189::AID-JAT632>3.0.CO;2-8

Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO. Effects of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys. 2006; 43:20–4.

Egbuonu ACC, Obidoa O, Ezeokonkwo CA, Ejikeme PM, Ezeanyika LUS. Some biochemical effects of subacute oral administration of L-arginine on monosodium glutamate-fed Wistar albino rats 1: Body weight changes, serum cholesterol, creatinine and sodium ion concentrations. Toxicol and Environ Chem. 2010; 92:1331–7. https://doi.org/10.1080/02772240903450645 DOI: https://doi.org/10.1080/02772240903450645

Subash S, Subramanian P. Morin improves the express ion of urea cycle enzymes in hyperammonemic rats. J Pharm Res. 2010; 3:2557–60.

Essa MM, Ali AA, Waly MI, Guillemin GJ, Subramanian P. Effect of leaves on serum lipids in ammonium chloride induced experimental hyperammonemic rats. Int J Biol Med Res. 2010; 3:71–3.

Zhang X. WHO monograph on selected medicinal plants. Geneva: World Health Organization; 2004: 2.