Sodium Hypochlorite and its Environmental Impacts; Time to Switch for Herbal Alternatives

Jump To References Section

Authors

  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam – 603103, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/ti/2022/v29i2/29010

Keywords:

Genotoxicity, Herbal Alternatives, Sanitizer, Sodium Hypochlorite, Toxicity

Abstract

Sanitizers are anti-microbial products in the form of spray, lotions, and creams. Sodium hypochlorite now plays an essential role in preserving hand cleanliness by denaturing microbial proteins by lysing the cell. These Sanitizers have also been used in medical, dental, and surgical treatments. If consumed, or through cutaneous or ocular exposure, sodium hypochlorite can be hazardous. When combined with acid it forms chlorine gas and when combined with basic solutions, chloramine is formed, both of which contribute to harmful consequences and it is an incredibly powerful oxidant. Furthermore, chlorination of drinking water with sodium hypochlorite oxidase organic pollutants, resulting in trihalomethanes, which are hazardous. It is critical for health care practitioners, particularly physicians, to understand the ways in which NaOCl can cause toxicity. The study of natural cures used to treat human sickness over millennia has laid the foundation for pharmaceutical development. The adaptation of alternative hand sanitizer formulations based on natural and herbal resources is one reasonable solution to address this toxicity problem. More extensive screens of indigenous plants with elevated flavonoids levels for antibacterial activities and the development of ecofriendly and efficient hand sanitizers should be conducted as contrast to artificial formulations.

Downloads

Download data is not yet available.

Published

2022-07-15

How to Cite

Jino Affrald, R. (2022). Sodium Hypochlorite and its Environmental Impacts; Time to Switch for Herbal Alternatives. Toxicology International, 29(2), 215–226. https://doi.org/10.18311/ti/2022/v29i2/29010

Issue

Section

Original Research
Received 2021-11-20
Accepted 2022-01-25
Published 2022-07-15

 

References

Golin AP, Choi D, Ghahary A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am J Infect Control. 2020; 48(9):1062–1067. https://doi.org/10.1016/j.ajic.2020.06.182.

Racioppi F, Daskaleros PA, Besbelli N, Borges A, Deraemaeker C, Magalini SI, et al. Household bleaches based on sodium hypochlorite: Review of acute toxicology and poison control center experience. Food Chem Toxicol. 1994; 32(9):845–61. https://doi. org/10.1016/0278-6915(94)90162-7.

Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006; 11(4):147–57. https://doi.org/10.4265/bio.11.147.

Öter B, Topçuog Lu N, Tank MK, Çehreli SB. Evaluation of antibacterial efficiency of different root canal disinfection techniques in primary teeth. Photomed Laser Surg. 2018; 36(4):179–184. https://doi.org/10.1089/pho.2017.4324.

Megahed A, Aldridge B, Lowe J. Comparative study on the efficacy of sodium hypochlorite, aqueous ozone, and peracetic acid in the elimination of Salmonella from cattle manure contaminated various surfaces supported by Bayesian analysis. PLoS One. 2019; 14(5). https://doi.org/10.1371/journal.pone.0217428.

Peck B, Workeneh B, Kadikoy H, Patel SJ, Abdellatif A. Spectrum of sodium hypochlorite toxicity in man-also a concern for nephrologists. NDT Plus. 2011; 4(4):231– 235. https://doi.org/10.1093/ndtplus/sfr053.

Estrela C, Estrela CR, Barbin EL, Spanó JC, Marchesan MA, Pécora JD. Mechanism of action of sodium hypochlorite. Braz Dent J. 2002; 13(2):113–117. https://doi.org/10.1590/s0103-64402002000200007.

Mohammadi Z, Giardino L, Palazzi F, Shalavi S, Alikhani MY, Giudice GL, et al. Effect of sodium hypochlorite on the substantivity of chlorhexidine. Int. J. Clin. Dent. 2013; 6(2).

Mehdipour O, Kleier DJ, Averbach RE. Anatomy of sodium hypochlorite accidents. Compend Contin Educ Dent. 2007; 28(10):544–546, 548, 550. PMID: 18018389.

Tatke PA, Nidhiya IS, Deshpande SG. Safety profile of a polyherbal formulation (Gynocare capsules) in female rats by subchronic oral toxicity study. Toxicol Int. 2012; 19(2):106–111. https://doi.org/10.4103/0971- 6580.97196.

Alghamdi HA. A need to combat COVID-19; herbal disinfection techniques, formulations and preparations of human health friendly hand sanitizers. Saudi J Biol Sci. 2021; 28(7):3943–3947. https://doi.org/10.1016/j.sjbs.2021.03.077.

Manipal S, Hussain S, Wadgave U, Duraiswamy P, Ravi K. The mouthwash war - chlorhexidine vs. Herbal mouth rinses: A meta-analysis. J Clin Diagn Res. 2016; 10(5):ZC81–ZC83. https://doi.org/10.7860/ JCDR/2016/16578.7815. Epub 2016 May 1.

Pradeep AR, Suke DK, Martande SS, Singh SP, Nagpal K, Naik SB. Triphala, a new herbal mouthwash for the treatment of gingivitis: A Randomized controlled clinical trial. J Periodontol. 2016; 87(11):1352–1359. https://doi.org/10.1902/jop.2016.130406.

Pareek S, Nagaraj A, Sharma P, Atri M, Walia S, Naidu S, Yousuf A. Disinfection of dental unit water line using aloe vera: In vitro study. Int J Dent. 2013; 2013. https:// doi.org/10.1155/2013/618962.

Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int. 2012; 19(2):89–99. https://doi.org/10.4103/0971- 6580.97194.

Racioppi F, Daskaleros PA, Besbelli N, Borges A, Deraemaeker C, Magalini SI, et al. Household bleaches based on sodium hypochlorite: Review of acute toxicology and poison control center experience. Food Chem Toxicol. 1994; 32(9):845–861. https://doi. org/10.1016/0278-6915(94)90162-7.

Slaughter RJ, Watts M, Vale JA, Grieve JR, Schep LJ. The clinical toxicology of sodium hypochlorite. Clin Toxicol (Phila). 2019; 57(5):303–311. https://doi.org/10.1080/15 563650.2018.1543889.

Hidalgo E, Dominguez C. Growth-altering effects of sodium hypochlorite in cultured human dermal fibroblasts. Life Sci. 2000; 67(11):1331–1344. https://doi. org/10.1016/s0024-3205(00)00727-x.

Zhu WC, Gyamfi J, Niu LN, Schoeffel GJ, Liu SY, Santarcangelo F, et al. Anatomy of sodium hypochlorite accidents involving facial ecchymosis – A review. J Dent. 2013; 41(11):935–948. https://doi.org/10.1016/j.jdent.2013.08.012.

Wang C, Collins DB, Abbatt JPD. Indoor Illumination of terpenes and bleach emissions leads to Particle formation and growth. Environ Sci Technol. 2019; 53(20):11792– 11800. https://doi.org/10.1021/acs.est.9b04261.

Romanovski V, Claesson PM, Hedberg YS. Comparison of different surface disinfection treatments of drinking water facilities from a corrosion and environmental perspective. Environ Sci Pollut Res Int. 2020; 27(11):12704–12716. https://doi.org/10.1007/s11356-020-07801-9.

Emmanuel E, Keck G, Blanchard JM, Vermande P, Perrodin Y. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int. 2004; 30(7):891–900. https://doi.org/10.1016/j.envint.2004.02.004.

Gray DK, Duggan IC, Macisaac HJ. Can sodium hypochlorite reduce the risk of species introductions from diapausing invertebrate eggs in non-ballasted ships? Mar Pollut Bull. 2006; 52(6):689–695. https://doi.org/10.1016/j.marpolbul.2005.11.001.

Gül S, Savsar A, Tayfa Z. Cytotoxic and genotoxic effects of sodium hypochlorite on human peripheral lymphocytes in vitro. Cytotechnology. 2009; 59(2):113–119. https://doi.org/10.1007/s10616-009-9201-4.

Feretti D, Zani C, Alberti A, Copetta L, Nardi G, Monarca S. Valutazione della genotossicità di ipoclorito di sodio, biossido di cloro e acido peracetico mediante vegetali [Evaluation of genotoxicity of sodium hypochlorite, chlorine dioxide and peracetic acid using plant tests]. Ann Ig. 2003; 15(6):959–963.

Hamaguchi F, Tsutsui T. Assessment of genotoxicity of dental antiseptics: Ability of phenol, guaiacol, p-phenolsulfonic acid, sodium hypochlorite, p-chlorophenol, m-cresol or formaldehyde to induce unscheduled DNA synthesis in cultured Syrian hamster embryo cells. Jpn J Pharmacol. 2000; 83(3):273–276. https://doi.org/10.1254/jjp.83.273.

Mercado SAS, Bayona HAM. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Sci Total Environ. 2020; 701. https://doi.org/10.1016/j.scitotenv.2019.134992.

Le Curieux F, Marzin D, Erb F. Comparison of three short-term assays: Results on seven chemicals. Potential contribution to the control of water genotoxicity. Mutat Res. 1993; 319(3):223–36. https://doi.org/10.1016/0165-1218(93)90082-o.

U?ur Aydin Z, Akpinar KE, Hepokur C, Erdönmez D. Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells. Braz Oral Res. 2018; 32. https://doi.org/10.1590/1807-3107bor-2018.vol32.0119.

Marins JS, Sassone LM, Fidel SR, Ribeiro DA. In vitro genotoxicity and cytotoxicity in murine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid. Braz Dent J. 2012; 23(5):527–533. https://doi.org/10.1590/ s0103-64402012000500010.

Salazar-Mercado SA, Torres-León CA, Rojas-Suárez JP. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicol Environ Saf. 2019; 173:71–76. https://doi.org/10.1016/j.ecoenv.2019.02.027.

Pashley EL, Birdsong NL, Bowman K, Pashley DH. Cytotoxic effects of NaOCl on vital tissue. J Endod. 1985; 11(12):525–528. https://doi.org/10.1016/S0099- 2399(85)80197-7.

Aboul-Fotouh S, Farouk GM. Mitigation of delayed sodium hypochlorite-induced lung injury by Phosphodiesterase Enzyme Inhibitors (PDEIs), pentoxifylline and theophylline. Guinea Pigs. Egyptian Journal of Basic and Clinical Pharmacology. 2011 Jun 12;1(1):9-21.

Peck BW, Workeneh B, Kadikoy H, Abdellatif A. Sodium hypochlorite-induced acute kidney injury. Saudi J Kidney Dis Transpl. 2014; 25(2):381–384. https://doi. org/10.4103/1319-2442.128553.

Kleier DJ, Averbach RE, Mehdipour O. The sodium hypochlorite accident: experience of diplomates of the American Board of Endodontics. J Endod. 2008; 34(11):1346–1350. https://doi.org/10.1016/j. joen.2008.07.021.

Ingram III TA. Response of the human eye to accidental exposure to sodium hypochlorite. J Endod. 1990; 16(5):235–238. https://doi.org/10.1016/S0099-2399(06)81678-X.

Verma A, Vanguri VK, Golla V, Rhyee S, Trainor M, Abramov K. Acute kidney injury due to intravenous bleach injection. J Med Toxicol. 2013; 9(1):71–74. https://doi.org/10.1007/s13181-012-0259-6.

Rahmani SH, Ahmadi S, Vahdati SS, Moghaddam HH. Venous thrombosis following intravenous injection of household bleach. Hum Exp Toxicol. 2012; 31(6):637– 639. https://doi.org/10.1177/0960327111432506.

Guivarc’h M, Ordioni U, Ahmed HM, Cohen S, Catherine JH, Bukiet F. Sodium hypochlorite accident: A systematic review. J Endod. 2017; 43(1):16–24. https:// doi.org/10.1016/j.joen.2016.09.023.

Gernhardt CR, Eppendorf K, Kozlowski A, Brandt M. Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. Int Endod J. 2004; 37(4):272–280. https://doi.org/10.1111/j.0143-2885.2004.00804.x.

Gatot A, Arbelle J, Leiberman A, Yanai-Inbar I. Effects of sodium hypochlorite on soft tissues after its inadvertent injection beyond the root apex. J Endod. 1991; 17(11):573–574. https://doi.org/10.1016/S0099-2399(06)81725-5.

Chaugule VB, Panse AM, Gawali PN. Adverse Reaction of Sodium Hypochlorite during Endodontic Treatment of Primary Teeth. Int J Clin Pediatr Dent. 2015; 8(2):153–156. https://doi.org/10.5005/jp-journals-10005-1304. Epub 2015 Aug 11.

Pontes F, Pontes H, Adachi P, Rodini C, Almeida D, Pinto D Jr. Gingival and bone necrosis caused by accidental sodium hypochlorite injection instead of anaesthetic solution. Int Endod J. 2008; 41(3):267–270. https://doi.org/10.1111/j.1365-2591.2007.01340.x.

Luongo G, Previtera L, Ladhari A, Fabio GD, Zarrelli A. Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules. 2020; 25(10):2294. https://doi.org/10.3390/molecules25102294.

Clasen T, Edmondson P. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int J Hyg Environ Health. 2006 Mar; 209(2):173–81. https://doi.org/10.1016/j.ijheh.2005.11.004.

Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009; 30(6):507–14. https://doi.org/10.1086/597232.

Dubey S. Comparative antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis: An in vitro study. J Oral Biol Craniofac Res. 2016; 6(1):45–48. https://doi.org/10.1016/j.jobcr.2015.12.010.

Saxena D, Saha SG, Saha MK, Dubey S, Khatri M. An in vitro evaluation of antimicrobial activity of five herbal extracts and comparison of their activity with 2.5% sodium hypochlorite against Enterococcus faecalis. Indian J Dent Res. 2015; 26(5):524–527. https://doi.org/10.4103/0970-9290.172080.

Prabhakar J, Senthilkumar M, Priya MS, Mahalakshmi K, Sehgal PK, Sukumaran VG. Evaluation of antimicrobial efficacy of herbal alternatives (Triphala and green tea polyphenols), MTAD, and 5% sodium hypochlorite against Enterococcus faecalis biofilm formed on tooth substrate: an in vitro study. J Endod. 2010; 36(1):83–86. https://doi.org/10.1016/j.joen.2009.09.040.

Chaitanya BV, Somisetty KV, Diwan A, Pasha S, Shetty N, Reddy Y, Nadigar S. Comparison of antibacterial efficacy of turmeric extract, morinda citrifolia and 3% sodium hypochlorite on Enterococcus faecalis: An invitro study. J Clin Diagn Res. 2016; 10(10):ZC55–ZC57. https://doi.org/10.7860/JCDR/2016/19718.8650.

Anand PJ, Athira S, Chandramohan S, Ranjith K, Raj VV, Manjula VD. Comparison of efficacy of herbal disinfectants with chlorhexidine mouthwash on decontamination of toothbrushes: An experimental trial. J Int Soc Prev Community Dent. 2016; 6(1):22–27. https://doi.org/10.4103/2231-0762.175406.

Dubey S. Comparative antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis: An in vitro study. J Oral Biol Craniofac Res. 2016; 6(1):45–48. https://doi. org/10.1016/j.jobcr.2015.12.010.

Mahdizadeh S, Sawford K, van Andel M, Browning GF. Efficacy of citric acid and sodium hypochlorite as disinfectants against Mycoplasma bovis. Vet Microbiol. 2020; 243. https://doi.org/10.1016/j.vetmic.2020.108630.

Divia AR, Nair MG, Varughese JM, Kurien S. A comparative evaluation of Morinda citrifolia, green tea polyphenols, and Triphala with 5% sodium hypochlorite as an endodontic irrigant against Enterococcus faecalis: An in vitro study. Dent Res J (Isfahan). 2018; 15(2):117– 122.

Garg P, Tyagi SP, Sinha DJ, Singh UP, Malik V, Maccune ER. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica, triphala, green tea polyphenols and 5.25% sodium hypochlorite against Enterococcus fecalis biofilm. Saudi Endod. J. 2014; 4(3):122.

Gupta D, Kamat S, Hugar S, Nanjannawar G, Kulkarni R. A comparative evaluation of the antibacterial efficacy of Thymus vulgaris, Salvadora persica, Acacia nilotica, Calendula arvensis, and 5% sodium hypochlorite against Enterococcus faecalis: An in-vitro study. J Conserv Dent. 2020; 23(1):97–101. https://doi.org/10.4103/JCD. JCD_48_20.

Nourzadeh M, Amini A, Fakoor F, Raoof M, Sharififar F. Comparative antimicrobial efficacy of eucalyptus galbie and myrtus communis L. extracts, chlorhexidine and sodium hypochlorite against enterococcus faecalis. Iran Endod J. 2017 Spring; 12(2):205–210. https://doi.org/10.22037/iej.2017.40.