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1. Introduction
As welding technology improves, 

industry is incorporating more types 
of automatic welding equipment. 
O ne of th e  m ost im p o rta n t 
approaches being used is called 
intelligent automation for welding 
technology . T his ap p ro a c h  
com bines au tom atic  welding 
equ ipm en t, the  know ledge of 
hum an  e x p e rts , and A rtificial 
Intelligence (AI). An in telligent 
welding m ach ine  is the  one 
equipped with sensors, artificial 
intelligence and actuators to sense 
and control welding operations in

real tim e. Developing sm art or 
intelligent welding machines can 
reduce the occurrence of defects in 
welds. In te lligen t w elder is 
d iffe ren tia ted  from  a m ere 
m echanised or pre-program m ed 
welder in that it controls the quality 
of the weld directly rather than 
simply m aintaining the  welding 
parameters within specified limits of 
the values based on experience 
and/or trial welds.

Intelligent sensing and control is 
a multi-disciplinary approach that 
attempts to build adequate sensing 
capability, knowledge of process
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Figure 1: Schem atic diagram o f  an Intelligent W elding  System

physics, control capability, and 
welding eng ineering  in to the  
welding system  such th a t the  
welding machine is aware of the 
state of the weld and knows how to 
make a good weld [1]. The sensing 
and control technology should 
reduce the burden on the welder 
and guide the welder to eliminate 
e rro rs  w hile providing the  
adaptability needed to accommodate 
the variability found in the welding 
industry . In rea l-tim e contro l 
applications, an artificial intelligence 
(AI) techn ique can be used to 
generate a control action directly. 
Figure 1 shows the use of two of 
the AI techniques, image processing 
and expert system in an intelligent 
welding system.

The various methods of AI that 
can be applied to welding include 
expert systems, image processing, 
intelligent database systems, signal 
analysis, artificial neural networks, 
and fuzzy logic system s. W hile 
expert systems and fuzzy logic- 
based  system s m odel e x p e r t’s 
knowledge, neural networks follow 
the  ap p ro a c h  to learn  task 
correlations from exam ples and 
experimental data without the need 
to interview the expert. Artificial 
neural network is a mechanism for
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g e n e ra tin g  an  inpu t to ou tpu t 
m apping function given a set of 
discrete data points. Expert systems 
and fuzzy logic systems both differ 
from artificial neural networks in 
th a t they  use conditional logic 
statements as the input data. The 
d ifference  be tw een  th e s e  tw o 
m ethods is tha t expert system s 
norm ally give y e s /n o  ty p es  of 
output, whereas fuzzy logic systems 
admit degrees of may be or levels 
of grey as outputs. To reduce the 
d isadvantages of the  individual 
methods, individual processes can 
be com bined  w ith each  o ther. 
These so called hybrid methods are 
receiving considerable a tten tion  
from research community because 
of their tremendous potential for 
commercial exploitation.

2. Expert Systems
Expert system technology is a 

branch of_ artificial intelligence that 
has gained new respectability, partly 
due to the fact that the computers 
have th e  sp e ed  and  m em ory  
capacity to cope with the expert 
system techniques that are typically 
slow and memory intensive. Expert 
systems have the power to reason 
in a similar way to human experts, 
which has enabled them to solve 
extremely complex problems. Also 
they have the ability to cope with 
uncertain data, and still recommend 
a co u rse  of ac tio n . T h e se  
ch a ra c te r is tic s  are  d rastica lly  
different from those of conventional 
softwares, whose problem solving 
capabilities are strictly limited to 
algorithmic applications.

2.1 Definitions o f  e x p e r t  s y s t e m

An e x p e rt system  is an  
intelligent computer program that 
u ses  know ledge and  in ference

procedure to solve problems that 
a re  difficult enough  to require  
significant human expertise for their 
so lu tio n  [2]. T he  know ledge 
necessary to perform at such a level 
plus the inference procedure used 
can be thought of as a model of the 
expertise of the best practitioners of 
the field.

2.2 Structure of an expert 
system

An e x p e rt system  can  be 
conside red  to consist of th re e  
components. A knowledge base, an 
in fe ren ce  eng ine  and a user 
interface (Fig. 2).

2.2.1 Knowledge base

T he know ledge base  is th e  
memory component of the system. 
It stores all the information given by 
both the program m er during the 
system development, and the user. 
Thus, the knowledge base itself is 
split into two parts; the static rule 
base and the dynamic fact base. 
The former contains all the subject 
in fo rm a tio n  co llected  by the  
programmer from books, journals 
and h u m a n  e x p e rts . T h is 
information is stored in the form of 
rules and questions. The dynamic 
fact base holds all the data given by 
the  user during the  p ro g ra m ’s 
operation.

2.2.2 Inference engine

T he inference engine is that 
component of an expert system that 
ac ts  on the  know ledge base , 
deciding which questions should be 
asked and which rules to invoke. 
This component operates upon the 
knowledge base to build expert 
reasoning. It controls and executes 
th is reasoning  tow ards specific

problems. Inference engines operate 
in many different ways, depending 
upon the formal logic that underlies 
them  and the control strategies 
employed.

2.2.3 User interface

T he th ird  com ponen t of an 
expert system is the user interface, 
which is the communications link 
between the programme and the 
user. At its most basic level, it is 
only what the user sees on the 
video monitor

Fig. 2: The structure o f  an E xpert Si/stem

2.3 Expert systems in welding

Several expert system s have 
been successfully developed and 
im plem en ted  in the  welding 
industry. Few of them  are listed 
below  and  th e  one  on ferrite  
prediction is described briefly.

2.3.1 Ferrite predictor ex p e rt  s y s t e m

T he ex p e rt system  is being 
developed in our laboratory at the 
Indira Gandhi Centre for Atomic 
Research (IGCAR) Kalpakkam. This
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so ftw are  uses the  Schaeffler, 
DeLong, and WRC-92 diagrams for 
predicting the d-ferrite in austenitic 
stainless steel welds. Using C++ 
graphics, program was written to 
view  th e se  d iagram s on the  
computer screen. The nickel and 
chromium equivalent formulae for 
th e  re sp ec tiv e  d iagram s w ere 
included in the program. Once the 
user en te rs  th e  chem ical 
composition of the weld, then the 
p rogram  displays th e  list of 
diagrams available to determine the 
ferrite number. If the user selects a 
particular diagram, the program  
calculates the respective chromium 
and nickel equivalents and displays 
it on the screen. Once the user asks 
for the diagram , it displays the 
respective diagram. On the diagram 
a marker, po in ts out the  exact 
fe rrite  num ber for th e  inpu t 
chemical composition. On request, 
and the solidification m ode are 
displayed in the results. The three 
c o n stitu tio n  d iagram s can  be 
displayed independently  w ith a 
w indow  displaying th e  ferrite  
number. Hidden iso-ferrite lines 
were introduced in the constitution 
diagrams to estim ate d-ferrite or 
ferrite number in closer intervals 
than it is available in the standard 
diagrams. This software is being 
developed to incorporate data base 
of stainless steels, AWS classified 
filler metals, knowledge base about 
stainless steels, their mechanical and 
corrosion properties. The system 
will be further improved to allow for 
m odification of com position or 
dilution interactively on the diagram 
and instantaneously view the effect 
on ferrite content

Table 1: Expert systems used in welding

No.

1

2

3

4

5

6

7

8
9

10 

11

12

13

14

Expert System

Welding procedure selection expert system  

Welder qualification test selection expert system  

Weld defect diagnosis expert system  

Weld estimating axpert system  

Weld scheduler expert system  

Weld costing system

Naval expert welding control system (NEWCS) [3]

Weldex

SAW expert system

An expert robot welding system [4]

Expert system for on-line process optimisation in GMA welding [5]

Expert system in electron beam welding [6]

Expert system for generating welding procedures of boilers & pressure vessels [7] 

Welding cracking prediction and diagnosis expert system [8]

Som e of the expert systems 
used in welding practice are given 
in Table 1.

3. Fuzzy Logic Systems
Fuzzy logic is an extension of 

b inary  logic and allows 
representation of fuzzy knowledge 
by determination of m embership 
values for linguistic values of 
linguistic (qualitative) variables. 
Fuzzy logic refers to multi-valued 
logic that includes not only the 
conventional two-valued, true/false 
crisp logic, but also the logic of 
three, four or more values. This 
means we can assign logic values of 
tru e , false and som ew here  in 
between.

The stages involved in fuzzy 
logic control are;

(1) Input crisp data from sensors.

(2) Fuzzify the  data using the 
membership functions.

(3) Application of the fuzzy rules 
to determine memberships of 
the output functions.

(4) Defuzzification of the output 
functions to determine crisp 
output.

(5) Outputting the crisp value to 
the control system.

The fuzzy logic designers’ task is 
to derive the membership function 
for the input and output variables 
and to generate the fuzzy rules. The 
ru le g e n e ra tio n  can be done 
intuitively as the  system  is 
p ro cess in g  da ta  w hose values 
belong to classes which can be 
easily understood i.e. large, small, 
fast, slow etc.

3.1 Fuzzy logic systems in 
welding

Today a num ber of pow er 
sources in the market employ digital 
control concepts. Power sources are 
also available which implement the 
control strategy using fuzzy logic. 
T his ap p ro a c h  fac ilita tes the  
developm en t of advanced  and 
intuitive control strategies than
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would be available using traditional 
coding techniques. It-is claimed that 
by using digital and fuzzy logic 
co n tro l the  pow er sou rce  will 
automatically adjust the arc voltage 
by d e tec tin g  th e  sh o rt circuit 
frequency , to acco m m o d a te  
variations in surface condition, tip 
to work-piece distance and travel 
speed . Som e of the fuzzy logic 
systems used in welding practice are 
given in Table 2.

4, Neural Networks
Neural Networks are computer 

system s that em ulate the neural 
reasoning behaviour of biological 
neural system s (e.g. the hum an 
brain). Neural networks consist of a 
se rie s  of n o d es  and  w eigh ted  
connections that when presented 
with a specific input pattern can 
associate specific output patterns. It 
is essentially a highly complex, non­
linear m athem atical relationship. 
Neural networks address problems 
that are often difficult for traditional 
computers to solve such as pattern 
rec o g n itio n . O ne of th e  m ost 
s ign ifican t s tre n g th s  of neural 
networks is their ability to learn 
from a limited set of exam ples. 
Once, trained, the neural nets can 
be used to predict and/or forecast 
results from the new input data. 
T h e  ad v an tag e  of th e  neural 
network approach is that a solution 
can be found for a problem without 
knowing the internal structure of the 
problem. Neural networks can find 
a good solution for yet unknown 
combinations of input values.

The generation of the neural 
network requires

Table 2: A few fuzzy logic system used in welding

No. Fuzzy Logic System

A fuzzy algorithm in process monitoring of arc welding |9]

Seam  tracking control by fuzzy logic in pulsed gas metal arc welding [10] 

Recent developments & trends in quality control technology for resistance welds [11]

(1) D efin ing th e  in p u t/o u tp u t 
topology of the network

(2) S e lec tin g  th e  num ber of 
hidden layers and the number 
of neurons in each hidden 
layer

(3) Selecting the weights in the 
neural network

(4) Training the network to adjust 
the weights using a training set 
consisting of correctly classified 
input/output pairs.

(5) Testing the network with data 
that had not been used for 
tra in in g  to d e te rm in e  the  
effectiveness of the network.

Neural netw orks for welding 
applications are now emerging as 
an alternative m eans of making 
“intelligent” decisions on a computer 
[12]. Unlike their better-know n 
contemporaries, neural networks are 
designed to directly simulate the 
operation of the human brain, and 
thereby, to improve decision-making. 
T h is  is ach ieved  by app ly ing  
weighted factors to each of the 
elements that influence a decision. 
These are then linked together to 
form  the  ne tw ork . S o ftw are  
p a c k ag e s  for building neural 
networks are advancing rapidly, but 
co n sid e rab le  issues abou t th e  
tra in in g  and  p rog ram m ing  of 
practical networks are still to be 
resolved.

4.1 Neural network, model for 
predicting ferrite number in 
stainless steel welds

Predicting the ferrite content in 
stainless steel welds is important in 
o rd e r to a sse ss  an  a llo y ’s 
susceptibility to hot cracking and to 
estimate the as-welded properties. 
A neural network analysis has been 
applied for the prediction of ferrite 
number in stainless steel arc welds 
as a function of weld composition. 
The steps involved in developing 
this neural network model are: (i) 
identify input and output variables; 
(ii) identify optim um  num ber of 
hidden nodes; (iii) identify initial 
weights that yield the best net; and 
(iv) evaluate the predictability of the 
netw ork . T he  m odel uses 13 
element concentrations as inputs 
that are C, Cr, Ni, Mo, N, Mn, Si, 
Fe, Cu, Ti, Nb, V and Co. Output 
is the ferrite number. In this case a 
feed-forward network with a back- 
propagation optimisation schem e 
has been used. T he m odel was 
trained with the available data from 
the literature (923 data). The data 
covered a range of ferrite numbers 
from  0 to 100  w ith a 
c o rre sp o n d in g  w ide ran g e  in 
composition. This neural network 
architecture consists of input nodes, 
one hidden node and one out put 
node. The input node consists of 
13 elemental compositions and the 
out put node represent the ferrite
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number. The num ber of hidden 
nodes has to be optim ised for 
maximum accuracy. This was done 
as follows. The data-engine neural 
network package was used in the 
present investigation. The whole 
d a ta  se t (923 data) was split 
randomly in to training data set, test 
data set and recall data set. Then 
the data was normalized in the 
ran g e  0 -1 .  T he w eights w ere 
chosen  random ly. T he h idden  
nodes were varied from 1 to 20 to 
minimize the RMS error for the test 
da ta  set. A bout 60  different 
combinations of weights and the 
hidden nodes were used to identify 
the optimum network. The final 
neural network architecture with 
minimum RMS error for the test 
data was identified as one having
13 input nodes, 6 hidden nodes 
and one  out pu t node. T he 
optim um  neural ne tw ork  
architecture is shown in Fig. 3. This 
model predicts the amount of d- 
ferrite with a better accuracy. This 
model will be integrated with the 
software for predicting the d-ferrite 
using the constitution diagrams.

Som e of the neural netw ork 
models used in welding practice are 
given in Table 3.

5. Hybrid Methods in 
welding

By the integration of different AI 
methods, the disadvantages of the 
individual methods can be reduced 
and substantially efficient systems 
can be developed. Expert systems 
have the ability to represent the 
factual know ledge but not 
conceptual knowledge. Learning 
ability does not exist for expert 
systems. Until they are combined

Ouiput Layer

Hidden Laver

Lnpuc Layer
C Cr Ni Mo N Mn Fe Si Cu Ti Nb V Co

Fig.3: O ptim um  neural netw ork architecture fo r  ferrite prediction

w ith  neural netw orks, ex p e rt 
system s can  only be used to 
re p re se n t a h u m an ’s factual 
knowledge. While expert systems 
perform  well when dealing with 
crisp information i.e. where the fact 
is either true or false this can cause 
problems in automated system when 
an inpu t o sc illa tes  around  a 
threshold value. In fuzzy logic to 
overcome these problems rather 
th an  input values belonging to 
single input class i.e. greater than 
threshold or less than threshold, 
they can be assigned to multiple 
classes with a different membership 
function. Neural network models 
work well if the training data cover 
the whole problem space. Hence, 
the necessary data for training can 
become too extensive. If the training 
time has been too long, over-fitting 
may occur and will lead to a 
reduction of the generalization  
ability of the neural network. While 
the combination of fuzzy logic with 
neural networks allows, based on 
expert’s knowledge, the definition of 
struc tu re  as well of the  initial 
weighting of the neural network. 
This leads to substantial reduction 
of necessary training data sets and

of training time. Hybrid methods 
are proving more efficient than the 
individual Al systems. Some of the 
hybrid systems used in practice are 
given in Table 4

6. Current Status in India
As part of the Department of 

Science and Technology (DST) 
project on Intelligent Processing of 
M aterials (IPM), work has been 
carried out on the use of NDT 
tech n iq u es  such as acoustic  
emission (AE) and thermography for 
the study of resistance spot welding 
and narrow gap welding, and also 
foe end gap welding, spacer pad 
welding and bearing pad welding 
processes em ployed for critical 
nuclear fuel sub-assem bly 
components, in collaboration with 
Welding Research Institute (WRI), 
T iruchirapalli and Nuclear Fuel 
Complex (NFC), Hyderabad [38].

6.1 Narrow gap welding

In this study, carbon steel plates 
of length 1000 mm, width 100 mm 
and th ick n ess  40  mm w ere 
machined to have a “U” groove. 
COg welding was carried out inside 
the groove. AE and thermography
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Table 3: Neural network models in welding

No.

10

11

12

13

14

15

16

17

18

N eural N etw ork Model

E stim ating  optim al w eld ing  p a ram eters usin g  artificia l neural netw ork  
technology [13]

Nugget size sensing of spot weld based on neural network learning [14]

Gas metal arc penetration welding development utilizing neural nets 115]

M odelling and optim ising  of a MIG w elding p ro cess-a  ca se  study using  
experimental designs and neural networks [16]

Problems of predicting the quality and controlling weld formation during welding 
using neural network m odels [17]

Modelling of weld metal properties as a function of weld metal composition [18]

Neural network modelling of temperature distribution for control of gas metal 
arc welding [19]

Modelling of weld metal properties as a function of weld metal com position (20]

Control of weld pool width and cooling tim e in TIG welding using a neural 
network m odel [21]

Characterization and real-time measurement of geometrical appearance of the 
weld pool [22]

Impact toughness of C-Mn steel arc welds—Bayesian neural network analysis [23]

Artificial neural networks applied to process modelling for robotic arc welding [24]

Ultrasonic welding control using artificial intelligence (neural networks) [25]

A neural network approach to the prediction of subm erged arc weld metal 
chemistry [26]

M easurement of m olten pool shape and penetration control applying neural 
network in TIG welding of thin steel plates [27]

Using Al-m ethods for parameter scheduling, quality control and weld geometry 
determination in GMA-welding [28]

Neural network-based resistance spot welding control and quality prediction [29]

M odelling  gas m etal arc w eld  g eo m etry  using artificial neural netw ork  
technology [30]

te c h n iq u es  have b een  used  to 
monitor the process. Analysis of the 
AE signals during the three phases 
of welding indicated that it should 
be possible to monitor the welding 
process. Analysis of thermal images 
indicated that it is feasible to map 
th e  th erm al wave fron ts  from  
isothermal contour movements as 
the arc moves along the gap. The 
thermal distribution and its variation 
with tim e provides the  required

input for model based evaluation of 
residual s tresses, which in turn 
helps in optim ising the  welding 
process for obtaining weldments 
with minimum residual stresses.

6.2 Evaluation of resistance spot 
welds by acoustic emission, 
thermography and fuzzy logic 
assessment

In th is  study, AE and 
thermography techniques were used

for on-line monitoring of resistant 
spot welding process. In addition, 
other online approaches such as the 
use of the variations in dynamic 
resistance with fuzzy logic approach 
have been attempted on the data of 
resistance spot welding generated at 
WRI, Tiruchirapalli.

A number of carbon steel sheets 
of approximately 1.6 mm thickness 
were spot welded by making use of 
45-kVA capacity  p o rtab le  spo t 
welding machine. Spot welding trials 
were carried out at different welding 
conditions (representing struck weld, 
good  weld and  sp lash  weld 
conditions) by adjusting the phase 
shift setting  and the weld time. 
Figure 4 shows the variation of 
RMS voltage of the AE signal with 
time for good weld and bad weld. 
Figure 5 shows the thermal image 
of a good weld and that of the weld 
m ade w ith  a reduced  cu rren t. 
Analysis of a num ber of welds 
indicated that the heat distribution 
in a good weld is uniformly and 
symmetrically distributed about the 
centre of the weld, whereas bad 
welds have irregu lar therm al 
pattern.

For implementation of the fuzzy 
logic control, both nugget diameter 
and dynamic resistance were graded 
as small, medium and large with 
triangular m em bership function. 
The quality is graded as very poor, 
poor, good and very good. Based 
on the software developed at the 
Indian Institute of Technology (IIT) 
Madras, a fuzzy estimator for the 
above experimental data has been 
arrived  at. S ystem atic  s tud ies 
showed that the experimental value
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Table 4: Hybrid systems in welding

No. H ybrid System s

The role of intelligent systems in weld process control [31]

Self-learning fuzzy neural networks and computer vision for control of pulsed 
GTAW [32]

Development of an intelligent system for cooling rate & fill control in GMAW (33J 

A neural netvvork/fuzzy logic system for weld penetration control [34] 

Controlling resistance spot welding using neural network and fuzzy logic |35] 

Application of artificial intelligence techniques to resistance spot welding [36] 

Automatic setting of arc voltage using fuzzy logic [37]

of the quality index is in agreement 
with that predicted by the fuzzy 
estimator.

6.3 Artificial neural networks 
applied to evaluation of resistant 
spot welding process

The process variables considered 
are the dynamic resistance, nugget 
diameter and the percentage load. 
From  th e  da ta  g en e ra te d , a 
database of 20 points has been 
screen ed  during the  tra in ing  
process. First 15 point were used 
for training and the rest 5 points 
were use to predict. The optimum 
netw ork  a rch itec tu re  has been  
arrived with 20 hidden nodes. The 
num ber of cycles required was 
3 0 0 0 0 . T he optim um  value of 
learn ing  ra te  is 0 .0 0 0 1 3  and

Fig.4: Variation in A E  R M S uoitage with tim e  
fo r  (a) good weld (b) bad weld

m om entum  ra te  is 0 .5 . T he 
m axim um  dev ia tion  in the  
percentage error is about 5% for the 
trained data and 3.23% for the 
predicted data.

6.4 Weld monitoring of 
nuclear fuel element 
components

6.4.1 E n d  c a p  welding

End cap welding is used for 
welding of nuclear fuel elements. 
The AE signals generated during 
the welding stage as well as during 
the post-weld stage were also found 
successful to discriminate normal 
welds from welds with presence of 
defects. Higher acoustic activity was 
generated for tubes welded with 
p resence  of various defects as 
com pared to the AE generated  
during welding of tubes without any 
defects i.e. normal weld (Fig. 6) The 
AE signals generated during welding 
stage as well as during the post­
weld s tage  w ere also  found 
successful to discriminate normal 
welds from welds with presence of 
defects. It has been observed that 
two separate clusters (normal welds 
and welds with presence of defects) 
are formed corresponding to the 
tw o weld c a teg o rie s . T herm al

Fig. 5: Therm ogram  o f (a) good weld, and (t 
bad weld

im aging carried  out on th es ' 
elements after the welding proces 
indicated that it is possible to detec 
m ost of the im perfections ver 
confidently. In general good weld 
are  ch a rac te rised  by uniforr 
isothermal widths and symmetric; 
isothermal patterns (Fig. 7a) whil 
bad welds are characterised  b 
uneven iso therm al w idths an 
patterns (Fig. 7b). By thermograph; 
the circumferential location whei 
the defect had occurred could als 
be indicated.

6.4.2 Spacer pad welding

AE generated during the spac> 
pad welding was correlated wit 
weld quality. A combination of fi 
parameters such as: (a) initial coun 
and energy upon start of weldin
(b) cumulative counts and energy f 
the complete weld cycle includii 
their values; and (c) counts ar 
energy generated only during tl 
welding stage, were identifie 
Figure 8 shows the m aster pi 
[(cumulative energy -  initial enerc 
vs. (initial en e rg y /cu m u la ti
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energy)] for different types of welds. 
It can be seen that normal double 
coin welds form clusters in the both 
upper and lower regions of the plot 
while the single coin welds fall in 
the central region. The low pressure 
vVelds form cluster in the central 
region. It is also seen  th a t the 
defective welds com prising both 
jingle coin welds and welds made 
with low-pressure fall in the high 
;ide of the energy ratio. Thus, the 
different categories of welds namely 
lormal double coin weld, single coin 
veld and welds m ade with low 
jressure can be clearly distinguished 
ising different parameters of the AE 
ignals.

.4.3 Bearing pad welding

AE activity generated  during 
earing pad welding of the normal 
;elds and welds with high current 
ave shown that higher AE counts 
re generated during welding of the 
earing pads with high current as 
ompared to normal weld. Variation 
f total counts generated with total 
rength values of the welds has also 
id ica ted  th e  feasib ility  of 
istinguishing normal welds and 
•elds with high current (Fig. 9).

. Conclusions
 ̂ Artificial Intelligence methods are 
nding applications in intelligent 
>nsing and control of the welding 
^rocess that involves controlling 
3th the desired operation of the 
'■‘ocess and the properties of the 
^'oduct. Due to the long experience 
' welding, extensive knowledge is 
 ̂ hand. Data for the development 

■ self-learning system s already 
^ist. Data can be generated quickly 
^necessary. These research efforts 
v]! in future lead to the increased
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Fig. 6: A E  counts observed during end-cap welding with defects and uariation o f weld
parameters.

Fig. 7.' Therm al image o f  (a) norm al weld, and (bj weld with excess graphite coating

ap p lica tio n  of AI m eth o d s in 
automated welding. Neural networks 
have the capability to dynamically 
m odel the relationship betw een 
input and output parameters in the 
com plex and highly non-linear 
welding process. Combination of 
th e  neural ne tw ork , w ith its 
mapping and pattern recognition

cap ab ilitie s  and a fuzzy logic 
controller with its ability to handle 
vague and imprecise data is likely to 
offer greatest benefits in overcoming 
the limitations of existing control 
systems.

The work carried out under the 
DST project on IPM has shown the 
feasibility of on-line monitoring of
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INITIAL ENERGY/ CUM ENERGY

Fig. 8: Variation in (cum ulative -  initai A E  energ\>) with A E  energy ratio fo r spacer pad  
welding (u Coin removed; Doubli coin; 6 Low press)

welding processes. Realising the 
great potential AI techniques hold 
for the Indian industry, the DST 
funded a mission project on 1PM. 
IGCAR Kalpakkam  piloted this 
project in collaboration with private 
industry. Under this project work 
has been carried out to develop 
neuro-fuzzy model for controlling 
the resistance spot welding process 
in co llab o ra tio n  w ith WRI, 
Tiruchirapalli and IIT Madras. After 
successful completion of the Phase-
I of this project, the Phase-II is

NORMAL 

HIGH CURRENT

3  100 
0

200 300 400 500
TOTAL WELD STflENGTTHikgJ)

Fig. 9: A E  during bearing pad we!ding

underway. In Phase-II it is planned 
to explo it full p o ten tia l of 
application of AI techniques for 
intelligent automation of welding 
processes.
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0  CROSS WORD Conceived and constructed : Dr. S. Bhattacharya

a 9 b 10 12 3 c 6

5 14 2

11 d 9 14 18 19 1 12 17 1 13 10 12 3

2 6

e 13 3 f 4 1 11 13 2 8 17 S 3

2 8 h 7 i 5 16

]7 1 12 12 2 6 1 k 7 11 14 20 10

2 6 • 9 2 14 2 12 1

3 m 1 11 1 n 3 o 6 12 5 13 1 13 21

p 10 3 - 14 5 q 13 1 r 3 10 22

6 12 14 12

2 s 4 12 17 10

5 1 1 16 3

8 11 8 15

t 13 2 9 6 5 12 6 2 5 8

C lu e : Each number represents an alphabet in random order. Replace the number by a suitable 
alphabet to get a word related to welding. To start with replace 3  by C wlierever it appears.

A c r o s s D o w n

b(3) d (9,3) e (2 ) a (14) c (3 ) g (6 )
f(7) j(7) k(4) h (5) i(5) n (7)
1(4) m (9) p (2 ) 0 (5 ) r(5) s(4 )
q (5) t(1 0 )
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