INTELLIGENT WELDING OF MATERIALS

Metallurgy and Materials Group,

1. Introduction

As welding technology improves,
industry is incorporating more types
of automatic welding equipment.
One of the most important
approaches being used is called
intelligent automation for welding
technology. This approach
combines automatic welding
equipment, the knowledge of
human experts, and Artificial
Intelligence (Al). An intelligent
welding machine is the one
equipped with sensors, artificial
intelligence and actuators to sense
and control welding operations in
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real time. Developing smart or
intelligent welding machines can
reduce the occurrence of defects in
welds. Intelligent welder is
differentiated from a mere
mechanised or pre-programmed
welder in that it controls the quality
of the weld directly rather than
simply maintaining the welding
parameters within specified limits of
the values based on experience
and/or trial welds.

Intelligent sensing and control is
a multi-disciplinary approach that
attempts to build adequate sensing
capability, knowledge of process

Figure 1: Schematic diagram of an Intelligent Welding System
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physics, control capability, and
welding engineering in to the
welding system such that the
welding machine is aware of the
state of the weld and knows how to
make a good weld [1]. The sensing
and control technology should
reduce the burden on the welder
and guide the welder to eliminate
errors while providing the
adaptability needed to accommodate
the variability found in the welding
industry. In real-time control
applications, an artificial intelligence
(Al) technique can be used to
generate a control action directly.
Figure 1 shows the use of two of
the Al techniques, image processing
and expert system in an intelligent
welding system.

The various methods of Al that
can be applied to welding include
expert systems, image processing,
intelligent database systems, signal
analysis, artificial neural networks,
and fuzzy logic systems. While
expert systems and fuzzy logic-
based systems model expert’s
knowledge, neural networks follow
the approach to learn task
correlations from examples and
experimental data without the need
to interview the expert. Artificial
neural network is a mechanism for
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generating an input to output
mapping function given a set of
discrete data points. Expert systems
and fuzzy logic systems both differ
from artificial neural networks in
that they use conditional logic
statements as the input data. The
difference between these two
methods is that expert systems
normally give yes/no types of
output, whereas fuzzy logic systems
admit degrees of may be or levels
of grey as outputs. To reduce the
disadvantages of the individual
methods, individual processes can
be combined with each other.
These so called hybrid methods are
receiving considerable attention
from research community because
of their tremendous potential for
commercial exploitation.

2. Expert Systems

Expert system technology is a
branch of_artificial intelligence that
has gained new respectability, partly
due to the fact that the computers
have the speed and memory
capacity to cope with the expert
system techniques that are typically
slow and memory intensive. Expert
systems have the power to reason
in a similar way to human experts,
which has enabled them to solve
extremely complex problems. Also
they have the ability to cope with
uncertain data, and still recommend
a course of action. These
characteristics are drastically
different from those of conventional
softwares, whose problem solving
capabilities are strictly limited to
algorithmic applications.

2.1 Definitions of expert system

An expert system is an
intelligent computer program that
uses knowledge and inference
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procedure to solve problems that
are difficult enough to require
significant human expertise for their
solution [2]. The knowledge
necessary to perform at such a level
plus the inference procedure used
can be thought of as a model of the
expertise of the best practitioners of
the field.

2.2 Structure of an expert
system

An expert system can be
considered to consist of three
components. A knowledge base, an
inference engine and a user
interface (Fig. 2).

2.2.1 Knowledge base

The knowledge base is the
memory component of the system.
It stores all the information given by
both the programmer during the
system development, and the user.
Thus, the knowledge base itself is
split into two parts; the static rule
base and the dynamic fact base.
The former contains all the subject
information collected by the
programmer from books, journals
and human experts. This
information is stored in the form of
rules and questions. The dynamic
fact base holds all the data given by
the user during the program’s
operation.

2.2.2 Inference engine

The inference engine is that
component of an expert system that
acts on the knowledge base,
deciding which questions should be
asked and which rules to invoke.
This component operates upon the
knowledge base to build expert
reasoning. It controls and executes
this reasoning towards specific

problems. Inference engines operate
in many different ways, depending
upon the formal logic that underlies
them and the control strategies
employed.

2.2.3 User interface

The third component of an
expert system is the user interface,
which is the communications link
between the programme and the
user. At its most basic level, it is
only what the user sees on the
video monitor

Fig. 2: The structure of an Expert Si/stem

2.3 Expert systems in welding

Several expert systems have
been successfully developed and
implemented in the welding
industry. Few of them are listed
below and the one on ferrite
prediction is described briefly.

2.3.1 Ferrite predictor expert system

The expert system is being
developed in our laboratory at the
Indira Gandhi Centre for Atomic
Research (IGCAR) Kalpakkam. This
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software uses the Schaeffler,
DelLong, and WRC-92 diagrams for
predicting the d-ferrite in austenitic
stainless steel welds. Using C++
graphics, program was written to
view these diagrams on the
computer screen. The nickel and
chromium equivalent formulae for
the respective diagrams were
included in the program. Once the
user enters the chemical
composition of the weld, then the
program displays the list of
diagrams available to determine the
ferrite number. If the user selects a
particular diagram, the program
calculates the respective chromium
and nickel equivalents and displays
it on the screen. Once the user asks
for the diagram, it displays the
respective diagram. On the diagram
a marker, points out the exact
ferrite number for the input
chemical composition. On request,
and the solidification mode are
displayed in the results. The three
constitution diagrams can be
displayed independently with a
window displaying the ferrite
number. Hidden iso-ferrite lines
were introduced in the constitution
diagrams to estimate d-ferrite or
ferrite number in closer intervals
than it is available in the standard
diagrams. This software is being
developed to incorporate data base
of stainless steels, AWS classified
filler metals, knowledge base about
stainless steels, their mechanical and
corrosion properties. The system
will be further improved to allow for
modification of composition or
dilution interactively on the diagram
and instantaneously view the effect
on ferrite content
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Table 1. Expert systems used in welding

No. Expert System

1 Welding procedure selection expert system

2 Welder qualification test selection expert system

3 Weld defect diagnosis expert system

4 Weld estimating axpert system

5 Weld scheduler expert system

6 Weld costing system

7 Naval expert welding control system (NEWCS) [3]

8 Weldex

9 SAW expert system

10  An expert robot welding system [4]

11 Expert system for on-line process optimisation in GMA welding [5]
12 Expert system in electron beam welding [6]

13 Expert system for generating welding procedures of boilers & pressure vessels [7]
14 Welding cracking prediction and diagnosis expert system [8]

Some of the expert systems
used in welding practice are given
in Table 1.

3. Fuzzy Logic Systems

Fuzzy logic is an extension of
binary logic and allows
representation of fuzzy knowledge
by determination of membership
values for linguistic values of
linguistic (qualitative) variables.
Fuzzy logic refers to multi-valued
logic that includes not only the
conventional two-valued, true/false
crisp logic, but also the logic of
three, four or more values. This
means we can assign logic values of
true, false and somewhere in
between.

The stages involved in fuzzy
logic control are;

(1) Input crisp data from sensors.

(2) Fuzzify the data using the
membership functions.

(3) Application of the fuzzy rules
to determine memberships of
the output functions.

(4) Defuzzification of the output
functions to determine crisp
output.

(5) Outputting the crisp value to
the control system.

The fuzzy logic designers’ task is
to derive the membership function
for the input and output variables
and to generate the fuzzy rules. The
rule generation can be done
intuitively as the system s
processing data whose values
belong to classes which can be
easily understood i.e. large, small,
fast, slow etc.

3.1 Fuzzy logic systems in
welding

Today a number of power
sources in the market employ digital
control concepts. Power sources are
also available which implement the
control strategy using fuzzy logic.
This approach facilitates the
development of advanced and
intuitive control strategies than



would be available using traditional
coding techniques. It-is claimed that
by using digital and fuzzy logic
control the power source will
automatically adjust the arc voltage
by detecting the short circuit
frequency, to accommodate
variations in surface condition, tip
to work-piece distance and travel
speed. Some of the fuzzy logic
systems used in welding practice are
given in Table 2.

4, Neural Networks

Neural Networks are computer
systems that emulate the neural
reasoning behaviour of biological
neural systems (e.g. the human
brain). Neural networks consist of a
series of nodes and weighted
connections that when presented
with a specific input pattern can
associate specific output patterns. It
is essentially a highly complex, non-
linear mathematical relationship.
Neural networks address problems
that are often difficult for traditional
computers to solve such as pattern
recognition. One of the most
significant strengths of neural
networks is their ability to learn
from a limited set of examples.
Once, trained, the neural nets can
be used to predict and/or forecast
results from the new input data.
The advantage of the neural
network approach is that a solution
can be found for a problem without
knowing the internal structure of the
problem. Neural networks can find
a good solution for yet unknown
combinations of input values.

The generation of the neural
network requires
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Table 2: A few fuzzy logic system used in welding

No. Fuzzy Logic System

A fuzzy algorithm in process monitoring of arc welding |9]

Seam tracking control by fuzzy logic in pulsed gas metal arc welding [10]

Recent developments & trends in quality control technology for resistance welds [11]

(1) Defining the input/output
topology of the network

(2) Selecting the number of
hidden layers and the number
of neurons in each hidden
layer

(3) Selecting the weights in the
neural network

(4) Training the network to adjust
the weights using a training set
consisting of correctly classified
input/output pairs.

(5) Testing the network with data
that had not been used for
training to determine the
effectiveness of the network.

Neural networks for welding
applications are now emerging as
an alternative means of making
“intelligent” decisions on a computer
[12]. Unlike their better-known
contemporaries, neural networks are
designed to directly simulate the
operation of the human brain, and
thereby, to improve decision-making.
This is achieved by applying
weighted factors to each of the
elements that influence a decision.
These are then linked together to
form the network. Software
packages for building neural
networks are advancing rapidly, but
considerable issues about the
training and programming of
practical networks are still to be
resolved.

4.1 Neural network, model for
predicting ferrite number in
stainless steel welds

Predicting the ferrite content in
stainless steel welds is important in
order to assess an alloy’s
susceptibility to hot cracking and to
estimate the as-welded properties.
A neural network analysis has been
applied for the prediction of ferrite
number in stainless steel arc welds
as a function of weld composition.
The steps involved in developing
this neural network model are: (i)
identify input and output variables;
(i) identify optimum number of
hidden nodes; (iii) identify initial
weights that yield the best net; and
(iv) evaluate the predictability of the
network. The model uses 13
element concentrations as inputs
that are C, Cr, Ni, Mo, N, Mn, Si,
Fe, Cu, Ti, Nb, V and Co. Output
is the ferrite number. In this case a
feed-forward network with a back-
propagation optimisation scheme
has been used. The model was
trained with the available data from
the literature (923 data). The data
covered a range of ferrite numbers
from 0 to 100 with a
corresponding wide range in
composition. This neural network
architecture consists of input nodes,
one hidden node and one out put
node. The input node consists of
13 elemental compositions and the
out put node represent the ferrite
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number. The number of hidden
nodes has to be optimised for
maximum accuracy. This was done
as follows. The data-engine neural
network package was used in the
present investigation. The whole
data set (923 data) was split
randomly in to training data set, test
data set and recall data set. Then
the data was normalized in the
range 0-1. The weights were
chosen randomly. The hidden
nodes were varied from 1 to 20 to
minimize the RMS error for the test
data set. About 60 different
combinations of weights and the
hidden nodes were used to identify
the optimum network. The final
neural network architecture with
minimum RMS error for the test
data was identified as one having
13 input nodes, 6 hidden nodes
and one out put node. The
optimum neural network
architecture is shown in Fig. 3. This
model predicts the amount of d-
ferrite with a better accuracy. This
model will be integrated with the
software for predicting the d-ferrite
using the constitution diagrams.

Some of the neural network
models used in welding practice are
given in Table 3.

5. Hybrid Methods in
welding

By the integration of different Al
methods, the disadvantages of the
individual methods can be reduced
and substantially efficient systems
can be developed. Expert systems
have the ability to represent the
factual knowledge but not
conceptual knowledge. Learning
ability does not exist for expert
systems. Until they are combined
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Fig.3: Optimum neural network architecture for ferrite prediction

with neural networks, expert
systems can only be used to
represent a human’s factual
knowledge. While expert systems
perform well when dealing with
crisp information i.e. where the fact
is either true or false this can cause
problems in automated system when
an input oscillates around a
threshold value. In fuzzy logic to
overcome these problems rather
than input values belonging to
single input class i.e. greater than
threshold or less than threshold,
they can be assigned to multiple
classes with a different membership
function. Neural network models
work well if the training data cover
the whole problem space. Hence,
the necessary data for training can
become too extensive. If the training
time has been too long, over-fitting
may occur and will lead to a
reduction of the generalization
ability of the neural network. While
the combination of fuzzy logic with
neural networks allows, based on
expert’s knowledge, the definition of
structure as well of the initial
weighting of the neural network.
This leads to substantial reduction
of necessary training data sets and

of training time. Hybrid methods
are proving more efficient than the
individual Al systems. Some of the
hybrid systems used in practice are
given in Table 4

6. Current Status in India

As part of the Department of
Science and Technology (DST)
project on Intelligent Processing of
Materials (IPM), work has been
carried out on the use of NDT
techniques such as acoustic
emission (AE) and thermography for
the study of resistance spot welding
and narrow gap welding, and also
foe end gap welding, spacer pad
welding and bearing pad welding
processes employed for critical
nuclear fuel sub-assembly
components, in collaboration with
Welding Research Institute (WRI),
Tiruchirapalli and Nuclear Fuel
Complex (NFC), Hyderabad [38].

6.1 Narrow gap welding

In this study, carbon steel plates
of length 1000 mm, width 100 mm
and thickness 40 mm were
machined to have a “U” groove.
COg welding was carried out inside
the groove. AE and thermography
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Table 3: Neural network models in welding

neural network

No. Neural Network Model
Estimating optimal welding parameters using artificial
technology [13]
Nugget size sensing of spot weld based on neural network learning [14]
Gas metal arc penetration welding development utilizing neural nets 115]
Modelling and optimising of a MIG welding process-a case study using
experimental designs and neural networks [16]
Problems of predicting the quality and controlling weld formation during welding
using neural network models [17]
Modelling of weld metal properties as a function of weld metal composition [18]
Neural network modelling of temperature distribution for control of gas metal
arc welding [19]
Modelling of weld metal properties as a function of weld metal composition (20]
Control of weld pool width and cooling time in TIG welding using a neural
network model [21]

10 Characterization and real-time measurement of geometrical appearance of the
weld pool [22]

1 Impact toughness of C-Mn steel arc welds—Bayesian neural network analysis [23]

12 Artificial neural networks applied to process modelling for robotic arc welding [24]

13 Ultrasonic welding control using artificial intelligence (neural networks) [25]

14 A neural network approach to the prediction of submerged arc weld metal
chemistry [26]

15 Measurement of molten pool shape and penetration control applying neural
network in TIG welding of thin steel plates [27]

16 Using Al-methods for parameter scheduling, quality control and weld geometry
determination in GMA-welding [28]

17 Neural network-based resistance spot welding control and quality prediction [29]

18 Modelling gas metal arc weld geometry using artificial

neural network

technology [30]

techniques have been used to
monitor the process. Analysis of the
AE signals during the three phases
of welding indicated that it should
be possible to monitor the welding
process. Analysis of thermal images
indicated that it is feasible to map
the thermal wave fronts from
isothermal contour movements as
the arc moves along the gap. The
thermal distribution and its variation
with time provides the required
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input for model based evaluation of
residual stresses, which
helps in optimising the welding

in turn

process for obtaining weldments
with minimum residual stresses.

6.2 Evaluation of resistance spot
welds by acoustic emission,
thermography and fuzzy logic
assessment

In this study, AE and
thermography techniques were used

for on-line monitoring of resistant
spot welding process. In addition,
other online approaches such as the
use of the variations in dynamic
resistance with fuzzy logic approach
have been attempted on the data of
resistance spot welding generated at
WRI, Tiruchirapalli.

A number of carbon steel sheets
of approximately 1.6 mm thickness
were spot welded by making use of
45-kVA capacity portable spot
welding machine. Spot welding trials
were carried out at different welding
conditions (representing struck weld,
good weld and splash weld
conditions) by adjusting the phase
shift setting and the weld time.
Figure 4 shows the variation of
RMS voltage of the AE signal with
time for good weld and bad weld.
Figure 5 shows the thermal image
of a good weld and that of the weld
made with a reduced current.
Analysis of a number of welds
indicated that the heat distribution
in a good weld is uniformly and
symmetrically distributed about the
centre of the weld, whereas bad
welds have irregular thermal
pattern.

For implementation of the fuzzy
logic control, both nugget diameter
and dynamic resistance were graded
as small, medium and large with
triangular membership function.
The quality is graded as very poor,
poor, good and very good. Based
on the software developed at the
Indian Institute of Technology (lIT)
Madras, a fuzzy estimator for the
above experimental data has been
arrived at. Systematic studies
showed that the experimental value
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Table 4: Hybrid systems in welding

No. Hybrid Systems

The role of intelligent systems in weld process control [31]

Self-learning fuzzy neural networks and computer vision for control of pulsed

GTAW [32]

Development of an intelligent system for cooling rate & fill control in GMAW (33]

A neural netvvork/fuzzy logic system for weld penetration control [34]

Controlling resistance spot welding using neural network and fuzzy logic |35]

Application of artificial intelligence techniques to resistance spot welding [36]

Automatic setting of arc voltage using fuzzy logic [37]

of the quality index is in agreement
with that predicted by the fuzzy
estimator.

6.3 Artificial neural networks
applied to evaluation of resistant
spot welding process

The process variables considered
are the dynamic resistance, nugget
diameter and the percentage load.
From the data generated, a
database of 20 points has been
screened during the training
process. First 15 point were used
for training and the rest 5 points
were use to predict. The optimum
network architecture has been
arrived with 20 hidden nodes. The
number of cycles required was
30000. The optimum value of
learning rate is 0.00013 and

Fig.4: Variation in AE RMS uoitage with time
for (a) good weld (b) bad weld
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momentum rate is 0.5. The
maximum deviation in the
percentage error is about 5% for the
trained data and 3.23% for the
predicted data.

6.4 Weld monitoring of
nuclear fuel element
components

6.4.1 End cap welding

End cap welding is used for
welding of nuclear fuel elements.
The AE signals generated during
the welding stage as well as during
the post-weld stage were also found
successful to discriminate normal
welds from welds with presence of
defects. Higher acoustic activity was
generated for tubes welded with
presence of various defects as
compared to the AE generated
during welding of tubes without any
defects i.e. normal weld (Fig. 6) The
AE signals generated during welding
stage as well as during the post-
weld stage were also found
successful to discriminate normal
welds from welds with presence of
defects. It has been observed that
two separate clusters (normal welds
and welds with presence of defects)
are formed corresponding to the
two weld categories. Thermal

Fig. 5: Thermogram of (a) good weld, and (t
bad weld

imaging carried out on thes'
elements after the welding proces
indicated that it is possible to detec
most of the imperfections ver
confidently. In general good weld
are characterised by uniforr
isothermal widths and symmetric;
isothermal patterns (Fig. 7a) whil
bad welds are characterised b
uneven isothermal widths an
patterns (Fig. 7b). By thermograph;
the circumferential location whei
the defect had occurred could als
be indicated.

6.4.2 Spacer pad welding

AE generated during the spac>
pad welding was correlated wit
weld quality. A combination of fi
parameters such as: (a) initial coun
and energy upon start of weldin
(b) cumulative counts and energy f
the complete weld cycle includii
their values; and (c) counts ar
energy generated only during tl
welding stage, were identifie
Figure 8 shows the master pi
[(cumulative energy - initial enerc
vs. (initial energy/cumulati



energy)] for different types of welds.
It can be seen that normal double
coin welds form clusters in the both
upper and lower regions of the plot
while the single coin welds fall in
the central region. The low pressure
vWelds form cluster in the central
region. It is also seen that the
defective welds comprising both
jingle coin welds and welds made
with low-pressure fall in the high
;ide of the energy ratio. Thus, the
different categories of welds namely
lormal double coin weld, single coin
veld and welds made with low
jressure can be clearly distinguished
ising different parameters of the AE
ignals.

.4.3 Bearing pad welding

AE activity generated during
earing pad welding of the normal
;elds and welds with high current
ave shown that higher AE counts
re generated during welding of the
earing pads with high current as
ompared to normal weld. Variation
f total counts generated with total
rength values of the welds has also
idicated the feasibility of
istinguishing normal welds and
eelds with high current (Fig. 9).

. Conclusions

A Artificial Intelligence methods are
nding applications in intelligent
>nsing and control of the welding
~rocess that involves controlling
3th the desired operation of the
Wocess and the properties of the
~Noduct. Due to the long experience
' welding, extensive knowledge is
~hand. Data for the development
m self-learning systems already
Nist. Data can be generated quickly
“necessary. These research efforts
V]! in future lead to the increased

*7.5 ) 15
Ch-1 COUNTS VO.Ch-1 TIME(boc)

8 ' 15
-1 COUNTS V3.Ch-1 TIME(SOC)
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" ~ « . ' 15
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Ch-1 COUNTS vs.Cfi-T TIME<oec)

Fig. 6: AE counts observed during end-cap welding with defects and uariation of weld
parameters.

Fig. 7' Thermal image of (@) normal weld, and (bj weld with excess graphite coating

application of Al methods in
automated welding. Neural networks
have the capability to dynamically
model the relationship between
input and output parameters in the
complex and highly non-linear
welding process. Combination of
the neural network, with its
mapping and pattern recognition

capabilities and a fuzzy logic
controller with its ability to handle
vague and imprecise data is likely to
offer greatest benefits in overcoming
the limitations of existing control
systems.

The work carried out under the
DST project on IPM has shown the
feasibility of on-line monitoring of
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INITIAL ENERGY/ CUM ENERGY

Fig. 8: Variation in (cumulative -

initai AE energ\>) with AE energy ratio for spacer pad

welding (u Coin removed; Doubli coin; 6 Low press)

welding processes. Realising the
great potential Al techniques hold
for the Indian industry, the DST
funded a mission project on 1PM.
IGCAR Kalpakkam piloted this
project in collaboration with private
industry. Under this project work
has been carried out to develop
neuro-fuzzy model for controlling
the resistance spot welding process
in collaboration with WRI,
Tiruchirapalli and IIT Madras. After
successful completion of the Phase-
I of this project, the Phase-Il is

NORMAL

HIGH CURRENT

3 100
[o]

200 300 400 500
TOTAL WELD STfIENGTTHikgJ)

Fig. 9: AE during bearing pad we!ding
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underway. In Phase-11 it is planned
to exploit full potential of
application of Al techniques for
intelligent automation of welding
processes.
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O CROSS WORD Conceived and constructed : Dr. S. Bhattacharya

a9 b 10 12 3
5 14
11 do 14 18 19
2 6
el3 3 f4 1 11 13 2
2 8

2 6

3 mi 11 1 n3 o6 12
plo 3 ) 14 5

6 12 14

2 s4 12 17

5 1 1 16

8 11 8

t13 2 9 6 5 12

k7

c6

12 17 1 13 10 12 3

17 S3
h7 i5 16
11 14 20 10

13 1 13 21

12

10

15

Clue: Each number represents an alphabet in random order. Replace the number by a suitable
alphabet to get aword related to welding. To start with replace 3 by C wlierever itappears.

Across
b(3) d (9,3) e(2)
f(7) i) k(4)
14 m (9) p(2)
a(s) t(10)

Down
a (14) c(3) 9(6)
h (5) i(5) n (7)
0(5) r(5) s(4)
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