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Abstract
Global environmental problems lead to plants life extremely stressful. Plants are exposed to more prevalent incidences 
of abiotic stresses like salinity, drought, high temperature, etc. The most significant factors that reduce agricultural 
productivity are abiotic stresses. Plants are part of ecosystem entities, and the future of sustainable agriculture will be 
based on the exploitation of the potential of plant-associated microbial communities. Microorganisms produce significant 
amounts of metabolites that help plants to cope with these stresses. Plants interactions with microorganisms create a 
diverse ecosystem in which both partners occasionally share a cooperative relationship. This review emphasizes the 
plant-microbe interactions and provides a roadmap that how microorganisms such as Arbuscular Mycorrhizal Fungi, 
Plant Growth Promoting Rhizobacteria and endophytes are used to mitigate the negative effects of various stresses to 
improve crop productivity. This review also elaborates molecular and biochemical mechanisms in plants and microbes to 
tolerate abiotic stress. Furthermore, the most recent developments in the study of plant-microbe intermodulation with a 
novel approach will allow us to use a multifaceted tool “biostimulants” against abiotic stress. The important challenges of 
commercializing biostimulants for improving crop yield under several plant growth environmental constraints are also 
included in this review. As a result, the purpose of this review is to illustrate the effects of different abiotic stressors on 
plants, as well as the role of beneficial plant microbes in helping to overcome the negative impact of abiotic stresses.
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1. Introduction
The most important threat to modern civilization is 
climate change. Worldwide, as the food demand is 
increasing global warming is becoming more severe. As 
climate change accelerates, there is a significant rise in 
Earth’s temperature. This rise has adverse effects on crop 

yields and cultivable land worldwide1,2. Abiotic stresses 
act in synergy with biotic stresses to minimize the crop 
yield. Plant-microbe relations are critical components of 
our biosphere as they ensure agricultural sustainability. 
Plants are associated with a huge number of microbes 
including mutualists to pathogens. Positive interaction is 
demonstrated by mutualistic and symbiotic interactions 
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with beneficial microbes while negative interaction is 
demonstrated by interactions with pathogenic microbes3,4. 
Plant symbiotic microbes have been isolated from plants 
cultivated in both natural and harsh environmental 
conditions. Plant-microbial populations from extreme 
conditions provide hints for understanding how microbes 
and plants survive in extreme conditions. Beneficial 
microbe-plant interaction promotes plant development, 
crop production, and soil fertility. Endophytes (microbes 
that live within plant tissues without harming the 
plant), Plant Growth Promoting Rhizobacteria (PGPR) 
(microbes that colonize in the rhizosphere), and 
Arbuscular Mycorrhizal Fungi (AMF) can all cause 
changes in the host plant5-8. Currently, it is well known 
that certain potent microbial isolates plant microbial 
diversity, known as Plant Growth Promoting (PGP) 
microorganisms that improve plant fitness protect against 
harmful organisms, and help to maintain soil health9. 
Microbes, for example, are utilized to develop a powerful, 
low cost and eco-friendly tool to minimize the negative 
effects of extreme environmental conditions10,11. Plant 
Growth Promoting Rhizobacteria (PGPRs) and Plant 
Growth-Promoting Fungi (PGPFs) are the two different 
microbial populations that help to remove abiotic 
stress12. Bacteria in the rhizosphere typically secrete plant 
hormones that repress the abiotic stresses13. Furthermore, 
there is a growing interest in biostimulants to mitigate 
the negative effects of climate change on agriculture. 

This review provides existing knowledge based on plant 
reactions to abiotic stresses and signalling actions.

2.  Major Abiotic Stressors in 
Plants 

Plants are constantly subjected to environmental 
challenges that affect their growth and yield, including 
both biotic (pests and viruses) and abiotic14. There are 
several types of abiotic stresses including salinity, drought, 
heavy metals, and temperature (Figure 1) that decrease 
crop production15,16. Stress leads to changes in various 
physiological, biochemical, and molecular processes17,18.

2.1 Salinity
Currently, saline land is rapidly increasing for a variety 
of reasons, including the melting of glaciers, heat stress-
mediated accumulating of salt in soils19, and vigorous use of 
chemical fertilizers20,21. These processes are predominant 
in coastal areas, where coastal erosion into groundwater 
increases soil salinization22. Furthermore, the overuse of 
pesticides and chemical fertilizers takes part in soil salinity, 
reducing both the diversity of soil microbes and plant 
growth and productivity23,24. Several salts are required 
by the plants for their growth and development but, 
they can be toxic if consumed in high concentrations25. 
In salt-prone soils, a suitable amount of NaCl enhances 

Figure 1. Various abiotic stresses and their physiological responses by the plants.
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plant growth, whereas at higher concentrations inhibits 
seed germination and development26,27. In the context of 
agricultural yield, moderate salinity can reduce crop yield 
by 50-80 per cent depending on the plant species28,29, 
posing a serious threat to food security. It begins with 
stress detection by sensors, in which molecules or 
structures change form or lose function, triggering a 
signaling cascade (Figure 2) that causes a response30. 
These sensors detect reversible physical changes (for 
example, changes in membrane fluidity and protein shape, 
as well as partial separation or melting of DNA and RNA 
strands), resulting in differential transcription control 
and stress-sensitive gene regulation17. The initial location 
of stress sensing is represented by the cell surface or cell 
membrane, and this generates changes in the cytosolic 
calcium (Ca2+) level. Ca2+ is a secondary stress messenger 
that transmits stress signals from cell surface/membranes 
to effector proteins, activating other messengers/sensors 
like Calcineurin B-Like proteins (CBLs), Calmodulin 
(CaMs), Calmodulin-Like proteins (CMLs), and 
Calcium-Dependent Protein Kinases (CDPKs/CPKs)17. 

Salinity affects plants by damaging the cell through 
disruption of membrane and by inhibiting the plant’s 
physiological processes such as photosynthesis, 
osmoregulation, respiration, and transpiration resulting 
in necrosis or chlorosis31,32. The disruption of ROS 
homeostasis, resulting in an overabundance of singlet 
oxygen, superoxide anion radical, hydrogen peroxide, 
and hydroxyl radical, is a biological response33. Plants 
can cope with oxidative stress by employing a scavenging 
system that includes both enzymes and a non-enzymatic 
antioxidant including low molecular weight compounds 
like amino acids, phenolic compounds, Glutathione 
(GSH), ascorbic acid, carotenoids and α-tocopherol34.

2.2 Drought
Climate change induces water scarcity and causes an 
agricultural threat, limiting crop productivity and thus 
food security. Alizadeh et al.,35 and Lesk et al.,36 estimated 
that physical dryness and ultra-high temperatures 
minimised worldwide cereal production by 9-10 % over 
the last few years. Like salt stress, drought also affects 
crop growth and productivity. Changes in rhizosphere 
physicochemical and biological properties due to drought 
stress hurt soil microbes and crop yield37. Temperature 
increases above optimum cause membrane disruption, 
protein denaturation, DNA damage and the accumulation 

of Reactive Oxygen Species (ROS), resulting in oxidative 
stress and ultimately plant cell death38,39. Stomatal closure 
is the first response of plants to control water loss which 
disrupts respiration and photosynthtic activity40. The 
stomatal closure leads to an increase in solar radiation 
causing a reactive oxygen species to burst provoked by 
water deficit, disrupting the rate of electron production41. 
Plants can use phytohormones to magnify the early stress 
signals during stress exposure. These phytohormone-
related signaling events may either initiate new signaling 
pathways including early signals or induce new signaling 
pathways with diverse components42,43.

2.3 Heavy Metals
Heavy metals accumulate in soil due to industrial and 
agricultural activities. Because of their higher density, 
heavy metals are lethal to plants at low concentrations44. 
The composition and nature of the bedrock determine the 
heavy metal content in the soil. Many heavy metals (As, 
Cu, Cd, Cr, Pb, Hg, Ni and Zn) are now hazardous and 
hurt human health worldwide45. Plants have developed a 
wide array of metabolic, physiologic, and genetic defence 
mechanisms to deal with heavy metal toxicity. The 
primary goal of these mechanisms is to limit the metal 
uptake from soil to stop heavy metal entrance into plant 
roots46,47. Low molecular weight organic acids, such as 
those found in root exudates, may act as chelating agents, 
limiting heavy metal entry into plants48. Furthermore, 
heavy metals activate detoxification and antioxidant 
defence mechanisms in plant tissues49. 

2.4 Temperature 
In plants, temperature-driven stress is of three types: 
High, chilling and freezing. Global climate change 
affects current and future mean temperatures, as well 
as the risk of extreme weather events. Heat and cold are 
physical stresses that affect plant growth and productivity 
by directly influencing molecular and supramolecular 
structures50. One of the most serious results of heat and 
cold stress is an increase in ROS production, which causes 
oxidative stress51,52, causing damage to biomembranes, 
proteins, pigments and nucleic acids causing impairment 
of plant growth and development53. Heat and cold stress 
also affect chlorophyll biosynthesis and photosynthesis 
because both have a large impact on chloroplast 
metabolism and structure. Heat shock, for example, 
disrupts the thylakoid membrane and supports grana 
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stacking and swelling54, whereas low temperature causes 
the development of a huge thylakoid protein complex55. 
Furthermore, heat and cold stresses can diminish plant 
water absorption which leads to dehydration56. Plant-
associated bacteria, such as PGPR, may be able to improve 
these responses by allowing plants more time to adapt to 
heat and cold stresses.

Plants also activate their response to heat stress 
through enzyme biosynthesis and osmolyte accumulation. 
Furthermore, the synthesis of Heat Shock Proteins 
(HSP-20, HSP-60, HSP-70, HSP-90, and HSP-100) as 
well as ROS scavenging enzymes allows plants to survive 
during brief periods of heat stress. During heat and 
cold stress, different signal transduction molecules are 
involved in stress-responsive gene activation57. Together 
with transcription factors, these molecules activate stress-
responsive genes. Once the stress-responsive genes are 
activated, they aid in the detoxification of ROS as well 
as the reactivation of essential enzymes and structural 
proteins58.

3.  Plant-Microbe Interaction 
Under Abiotic Stress

Several microbes are found in the rhizosphere region of 
plants, on leaf surfaces and other plant parts. Collectively, 
these microbial populations are considered plant 
microbiomes. These plant-linked microorganisms have a 
beneficial result on the plant they support plant growth 
and development. These microbes help the plants by 
increasing nutrient acquirement, granting resistance 
to pathogens, and increasing tolerance towards abiotic 
stresses including drought, heat soil salinity etc. The 
function and composition of the plant microbiome are 
regulated by environmental factors59. 

3.1 Beneficial Microbes
About ecosystem practices, plant-microbe interactions 
are crucial as the plant root system contains several 
microbial populations60. Microbes around the roots 
form the niche where the microbial populations thrive 

Figure 2. General abiotic stress signalling pathways in plants, starting from signal perception to stress responses. ROS-PKs 
(ROS-modulated protein kinase), PPs (Protein Phosphatases), MAPKs (Mitogen-Activated Protein Kinase), and CDPKs (Ca+- 
Dependent Protein Kinase) are represented as a, b, c, d.
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whereas microbes are present on the leaves for example 
Plant Growth Promoting Microbes (PGPM) promote the 
nutritional condition, growth, and wellness of plants61.

PGPM is a helpful microbe that includes Arbuscular 
Mycorrhizal Fungi (AMF), PGPB (Plant Growth-
Promoting Bacteria) and Rhizobia (PGPR)62,63. Drought 
state, inoculation of both AMF and PGPB was used 
to speed up water deficit tolerance by enhancing the 
Glutathione Peroxidase (GPX) and Ascorbate Peroxidase 
(APX) accumulation in plants. The dual inoculation 
has proved its beneficial effect on plant metabolism64,65. 
PGPM is supposed to offer a crucial role in controlling the 
genetic machinery which controls root-shoot formation 
during germination of seed. These microbial populations 
may colonize the area near the root and help to withstand 
the plants during various abiotic stresses like drought, 
salinity and ultra-high temperatures66,67.

PGPR includes various groups of soil bacteria, for 
example, Bacillus, Azobacter, Alcaligenes, Arthrobacter, 
Azospirillum, Bradyrhizobium, Burkholderia, 
Enterobacter, Flavobacterium, Klebsiella, Mesorhizobium, 
Pseudomonas, Streptomyces, Variovorax, Rhodococcus 
and Serratia etc., that are an important part of soil-plant 
systems and thus affect the plant growth and development 
and yield. PGPR supports plant growth directly and 
indirectly by releasing plant hormones or other bioactive 
compounds, changing internal levels of plant hormones, 
increasing nutrient uptake, and reducing the harmful 
effects of pathogens on plants. PGPR are grouped into 
two main categories: (a) symbiotic rhizobacteria that exist 
in the interior of the cell (intracellular PGPR like nodule 
forming bacteria) and (b) free-living rhizobacteria, that 
are present outside of the plant cells (extracellular PGPR 
like Azotobacter)68.

Endophytes reside inside healthy plants without 
causing any negative action on the host plant. Several 
fungal endophytes supports plant growth even with 
environmental limitations69. They play a key role by 
providing the host plant with increased phosphorus, 
nitrogen, iron etc. by which the host plant defends itself 
from environmental stresses70,71.

Similarly, AMF also assists the host plants in defeating 
many environmental stresses such as acidity, pathogens, 
desiccation and heavy metal toxicity by improved 
photosynthesis, nutrient uptake and gaseous exchange72,73. 
AMF are mainly used as biofertilizers and plants make 
a symbiotic connection with AMF particularly under 
water deficit conditions by osmotic regulation74,75. AMF 

association can increase nutrient withdrawal by plants 
and thus increase the rate of photosynthesis and biomass 
accumulation76,77.

3.2  Tolerance Mechanism by Microbes to 
Abiotic Stresses

Microbial association with the plant is the key adaptation, 
required for plant survival under extreme conditions. 
Microbial-mediated resistance against abiotic stresses 
is known as Induced Systemic Tolerance (IST). The 
microbiome supports vegetation to overcome such stress 
by utilizing its inherent metabolic properties78. It was 
found that the crucial rhizospheric inhabitants that help 
in the removal of many plant-related abiotic stresses 
are from genera Azotobacter79, Azospirillium80, Bacillus, 
Enterobacter, Rhizobium, Pantoea81, Burkholderia 
and Trichoderma82, Methylobacterium83 and the 
group Cyanobacteria84. PGPRs employed both direct 
and indirect modes of action for plant growth and 
development under stress conditions. In the direct mode 
of action, PGPRs facilitate N2-fixation and the production 
of plant regulators and organic catalysts in plants. The 
indirect mode of action involves antibiotics production, 
siderophores production and enzyme release85.

3.2.1 Direct Mechanism of Tolerance
Nitrogen Fixation
The plant growth and yield directly rely on the presence 
of important nutritional elements such as nitrogen, 
phosphorus iron etc. N2-fixing microorganisms are 
grouped into symbiotic and non-symbiotic nitrogen-
fixing bacteria. Symbiotic nitrogen-fixing bacteria 
include leguminous (pulses) and non-leguminous plants 
such as Rhizobia and Frankia etc. The non-nitrogen 
fixing bacterium includes cyanobacteria like Azotobacter, 
Azocarus and Nostoc86. The symbiotic association leads to 
the formation of root nodules in which N2-fixation occurs 
efficiently87.

Phosphate Solubilization
Plants usually face a scarcity of phosphorous under 
stress conditions. Both organic and inorganic form 
of phosphorous is naturally present in the soil88. The 
deficiency of phosphorous occurs in plants because it 
can only be absorbed in its monobasic and diabasic 
ionic form86. Phosphate-solubilizing bacteria supply the 
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phosphorous in the form of biofertilizers to enhance 
plant growth and yield. Phosphate solubilizer includes 
Azotobacter, Burkholderia, Enterobacter, Microbacterium, 
Bacillus, Flavbacterium, Rhizobium, Erwinia and 
Serratia89. 

Siderophore Production
Typically, iron is present in ferric form (Fe3+) in soil. 
PGPRs make it soluble by the secretion of siderophores, 
which promotes the chelation of ferric iron (Fe3+). 
Microbial siderophores are metal chelating agent, which 
ensures the iron presence in the rhizosphere of plants90.

Phytohormone Production
Several microbes help in the biosynthesis of phytohormone 
auxin. Several microbes isolated from many crop plants 
show the potential to synthesize auxin as a secondary 
metabolite91. Auxin mediates an important role in the 
communication between rhizobacteria and plants92.

3.2.2 Indirect Mechanisms of Tolerance
The eco-friendly way to control plant diseases is the 
appliance of microorganisms. Mostly PGPRs biocontrol 
activity controls the onset of systemic tolerance, nutrient 
accessibility, and the liberation of antifungal compounds. It 
was reported that many rhizobacteria generate antifungal 
molecules or compounds like hydrogen cyanide, 
2,4-diacetyl phloroglucinol, viscosinamide, pyoluteorin 
and pyrrolnitrin. Rhizobacteria act together with plant roots 
and provide resistance against pathogenic microorganisms 
by Induced Systemic Resistance (ISR)93. The symbiotic 
relation of AMFs promotes the growth of plants and water 
availability under abiotic stress conditions94. Similarly, 
endophytes help in N2 fixation and produce plant 
hormones and nutrient uptake for better plant growth. 
During the initial phase of endophyte colonization, 
the bacterial cells produce exo-polysaccharides for 
attachment to the root surface and guard the bacterial cells 
against oxidative damage95. The common mycorrhizal 
networks involved in the phosphorus transport and 
nitrogen to plants and thus improve plant growth during 
tense environmental conditions96. The endophytes that 
promote superior growth of plants are Bacillus pumilus 
(Ps19), Bacillus subtilis (Ps8), Bacillus licheniformis (Ps14), 
Lysinibacillus fusiformis (Ps7), and Pseudomonas putida 
(Ps30), which produce plant phytohormones for example 

Indole Acetic Acid (IAA), Gibberellic Acid (GA3), Zeatin 
and Abscisic Acid (ABA)97. 

4.  Microbe-Mediated Mitigation 
of Abiotic Stresses 

Diagne et al.,62 Liu et al.,63 and Sangiorgio et al.,98 defined 
that beneficial microorganisms include PGPB, AMF and 
rhizobia found in rhizospheres or free-living soils, or the 
interiors of plant tissues. Over the last few years, PGPM 
has been widely employed in numerous regions of the 
world for sustainable agriculture to limit the usage of 
chemical pesticides and fertilizers99-101. It is evident that 
beneficial microbes, including Plant Growth-Promoting 
Bacteria (PGPB), rhizobia, and fungi, play a promising 
role in sustainable agriculture and increasing plant 
tolerance to abiotic stresses102 (Figure 3).

4.1 Rhizobacterial Based Mitigation
Plants have adapted in several ways to protect themselves 
in stressful environments and stimulate their growth and 
development103,104. One of the most peculiar adaptations 
for the survival of plants in a stressed environment is a 
microbial relationship  with the plant. The microbiome 
aids plants in mitigating abiotic stress by utilizing 
metabolic and genetic mechanisms78. The application of 
useful microbes to increase tolerance for abiotic stress 
in plants is cheaper and more feasible105-107. Microbes 
on the roots create a niche for microbe populations to 
thrive, whereas microbes on the leaves, particularly 
PGPB, boost plant nutritional status, development, 
growth and fitness61. These soil microbes conduct 
abiotic stress regulation by several mechanisms 
simultaneously improving crop water relation and 
improving ion balance pathways105. It was found that 
the number of rhizospheric microbes that are used for 
mitigation of abiotic stresses in plants related to the 
genera Pseudomonas105, Azotobacter79, Azospirillium80 

and the group cyanobacteria84. PGPR helps to mitigate 
the negative impact of abiotic stress by the production 
of phytohormones, antioxidants and degradation 
of 1-Aminocyclopropane-1-Carboxylate (ACC) by 
bacterial ACC deaminase108,109. Plants inoculated with 
PGPR expressing the enzyme ACC deaminase can help 
to minimize abiotic stress by controlling ethylene110. 
Microbes can boost the production of low molecular 
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weight osmoprotectives, N2-fixation, organic acids and 
mineral phosphate solubilization to face abiotic stress111. 
Microbes speed up heavy metal tolerance by transporting 
them across the plasma membrane112.

4.2 Mycorrhizae Based Mitigation
Arbuscular Mycorrhizal Fungi (AMF) is a symbiotic 
fungus that can also play a role in plant development and 
health113. More than 70% of vascular plants form symbiotic 
associations with AMF, specifically during dryness for 
osmotic adjustment and increased antioxidant enzyme 
activity74,75. Crop yield is normally affected by drought 
and AMFs assist plants in retaining growth, increasing 
productivity and yield114. AMFs help in drought tolerance 
by ensuring continuous water intake to plants115.

AMF has the potential to thrive in salty environments. 
AMF can improve nutrient intake, assimilate 
carbohydrates, and reduce Cl- and Na+ ions in plants. 
AMFs can also increase stomatal conductance and reduce 
oxidative damage in plants exposed to salt stress111. 
Al-Karaki et al.,105 observed that when a tomato plant was 
inoculated with fungi Funneliformis mosseae under salty 
conditions, plant biomass increased. When wheat plants 
are infected with AMFs under salt conditions, oxidative 
damage is dramatically decreased116.

5.  Plant Biostimulants and their 
Role in Abiotic Stresses

Due to uncontrolled anthropogenic activities, plants are 
now facing several abiotic stresses that cause harmful effects 
on plant growth and thus reduce plant productivity117. 
These stresses may influence the biochemical as well as 
physiological processes of plants which make plants more 
prone to damage to pests and pathogens118. Currently, 
abiotic stresses are a major risk for food safety. Under 
abiotic stresses, the plant produces a variety of secondary 
metabolites for molecular, cellular, and physiological 
changes to produce resistance against abiotic stress. 
Diverse phytochemicals or agrochemicals are being used 
traditionally to mitigate adverse environmental conditions 
and their effects119. Biostimulants are the products 
obtained from plants and/or microbes and proven their 
role in enhancing resistance to many abiotic stresses and 
supporting various physiological processes for nutrient 
uptake, plant quality traits and translocation in plants. 
Biostimulants are non-nutrient entities, and they mediate 
the uptake of nutrients and have a beneficial role in stress 
resistance or plant growth promotion120. Currently, one 
of the most important and eco-friendly methods is to 
use biostimulants to counteract abiotic stress which have 

Figure 3. Mechanism of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhiza Fungi (AMF) against 
abiotic stress tolerance in plants. Figure 3 is reprinted from Kamran et al.,102 and is an open-access article (Copyright © 2022 by 
authors) distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
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been proposed as agronomic tools. Various raw materials 
from algae extracts, plant hormones (auxins, gibberellins 
and cytokinins), humic acids and PGPB have been used 
as biostimulant compositions121. 

5.1 Plant Hormone as Biostimulant 
Plant hormones auxins, gibberellins and cytokinins 
directly affect the life of plants. Auxin is the key regulator 
of apical dominance, cell differentiation, cell division, 
flowering, senescence, and abscission whereas cytokinins 
mainly regulate cell division, vascular development, apical 
dominance, and nutrient mobilization122. Gibberellic acid 
regulates the seed germination process, promotes the 
breakdown of seed dormancy, induction of hydrolytic 
enzymes α-amylase and protease and stem elongation and 
leaf expansion123. Experimental data showed that when 
a combination of Indole-Butyric Acid (IBA) cytokinin 
and gibberellic acid is used as a biostimulant on the 
seed of Gossypium hirsutum L. plant causes an increase 
in the seedling emergence percentage, leaf area, height, 
as well as the growth of seedlings124. Indole acetic acid 
and gibberellic acid are well-studied bacterial and fungal 
signalling molecules that are produced during plant-
microbe interactions as Microbial Plant Biostimulants 
(MPB) to boost plant growth and tolerance to abiotic 
stresses125,126. It has been reported that IAA improves root 
development in wheat with the administration of MPB 
Azospirillum brasilense127.

5.2 Algal Extract as Biostimulant
Algal extracts as biostimulants are promising 
preparations to apply as plant growth-promoting factors 
and have beneficial effects against abiotic stresses. It 
considerably improved the total chlorophyll content and 
antioxidant compound in plants128. Ghaderiardakani 
et al.,129 reported that the application of algal extracts 
on Kentucky bluegrass (Poapratensis L.) showed more 
salinity stress tolerance from saline soil. de Vasconcelos 
et al.,130 reported that when a leaf of Glycine max (L.) 
is exposed to algal extract causes higher seed yield. 
Currently, more than 47 companies are working on algal 
formulations in producing and marketing for agricultural 
use in which brown algae (Ascophyllum nodosum) and 
red algae (Lithothamnium calcareum), scientists are using 
various algal extract formulations131,132. Seaweed extracts 
from A. nodosum have been used for enhancing drought 
tolerance in ornamental plants (Spiraea nipponica and 

Pittosporum eugenioides) and results showed that plants 
treated with A. nodosum extract have higher phenolic 
content and improved physiology under mild drought 
stress conditions133.

5.3 Plant Parts as Biostimulants
The application of natural bioactive compounds as plant 
biostimulants has a profound impact on plant physiology. 
They trigger metabolic pathways of plant and leads to 
diverse expression of plant genes that are engaged in 
plant defense134. It has been reported that leaf extract of 
Moringa oleifera is used as biostimulants under normal 
and salty conditions for plant growth. Mohamed De 
et al.135 demonstrated that the biostimulants derived from 
ascorbate and Moringa oleifera leaf extract were shown to 
improve salt stress in pea plants by increasing antioxidant 
enzymes.

5.4 Microbes as Biostimulants
Currently, microbes as plant biostimulants are used 
for plant growth under stress conditions. Some 
microorganisms that show association with plants and 
increase abiotic stress tolerance have been identified and 
reported as Rhizobium, Azospirillum, Bradyrhizobium, 
Azotobacter, Pseudomonas, and Bacillus136. Members of 
these genera developed tolerant mechanisms by changing 
cell wall composition, forming protective biofilm and 
accumulating high concentrations of solutes which 
increases water-holding capacity. Inoculation of maize 
and wheat with the bacterium Azotobacter leads to 
increased biomass, nitrogen content and grain yield under 
salt stress137. Additionally, Bradacova et al.138 revealed that 
zinc and manganese-containing seaweed extract applied 
to maize crops as biostimulants showed improved cold 
resistance by improved ROS scavenging systems.

There are some categories of biostimulants which 
may be food and industrial waste-derived extracts, 
manures, composts and vermicompost extracts139. Agro-
industrial by-product-derived biostimulants were also 
reported to be effective in improving plant productivity, 
and secondary metabolites synthesis which supports 
several plant physiological responses. Juarez-Maldonado 
et al.140 reported that nanoparticles and nanomaterials 
are considered a new source of biostimulants. It has 
been found that nanoparticles and nanomaterials 
positively interact with plant surfaces and modulate the 
transportation of ions and metabolites which increases 
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the plant’s tolerance against abiotic stresses. Raliya et al.,141 

reported that the application of zinc oxide nanoparticles 
as a biostimulant on tomatoes increased chlorophyll and 
total soluble protein content as well as plant height.

6.  Conclusion and Future 
Directions

Abiotic stresses lead to economic and social difficulties 
for the global population. Changes in environmental 
scenarios have a lethal impact on plants, resulting 
in reduced growth and yields. PGPB is an excellent 
alternative to chemical fertilizers as they offer 
affordability, sustainability, and long-term effectiveness 
in increasing plant tolerance to many abiotic stresses. 
Future research is used to promote sustainable agriculture 
by using PGPBs that can offer plant resistance towards a 
variety of environmental stresses. For the effective use 
of beneficial microbes, researchers must conduct field 
trials and communicate results to farmers regarding the 
benefits of bacteria on plant growth, soil fertility and crop 
yield. Nano-encapsulation, a newly designed technology 
is ready for field testing to improve plant tolerance. 
This technology has the potential to save PGPRs from 
environmental disturbances, increase their distribution, 
and help in the regulation of microbial release in the 
soil. Furthermore, an investigation is required to search 
whether the “plant-fungal-bacterial” interactions can 
have cumulative effects on plants. Future research should 
also account for the ecological fear of the large-scale use 
of PGPRs. Thus, it should be wrapped up that PGPRs, by 
various mechanisms, tolerate abiotic stresses and provide 
a better environment for sustainable agriculture. There 
is also an important role of governments and the private 
sector in the promotion of PGPB, PGPR, biostimulants 
and AMF-formulated organic fertilizers for sustainable 
agriculture.
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