Structure Based Drug Design Studies on Heteroaryl Propanoic Acid Derivatives as PPARγ Agonists
Abstract
Keywords
Subject Discipline
References
A.R.Saltiel. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 104, 2001, 517-529.
D.E.Moller. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414, 2001, 821-827
(a) D.Kim, L.Wang, M.Beconi, et al (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 48, 2005, 141-151.
(b) E.B.Villhauer, J.A.Brinkman, G.B.Naderi, et al 1-[[(3-Hydroxy-1-adamantyl) amino]acetyl]-2-cyano-(S)-pyrrolidine: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties. J. Med. Chem. 46, 2003, 2774-2789.
(c) I.Gill, R.Patel. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: Preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin Bioorg. Med. Chem. Lett. 16, 2006, 705-709.
S.V.Joy, P.T.Rodgers, A.C.Scates. Incretin Mimetics as Emerging Treatments for Type 2 Diabetes Ann. Pharmacother. 39, 2005, 110-118.
F.M.Matschinsky. Glucokinase, glucose homeostasis, and diabetes mellitus. Diabetes. 51, 2002, S394-S404.
(a) R.S.Savkur, A.R.Miller. Investigational PPAR-γ agonists for the treatment of Type 2 diabetes. Expert Opin. Invest. Drugs. 15, 2006, 763-778.
(b) B.R.Henke. Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists for the Treatment of Type 2 Diabetes. J. Med. Chem. 47, 2004, 4118-4127.
(c) B.Staels, Fruchart. Molecular Characterization of New Selective Peroxisome Proliferator–Activated Receptor γ Modulators with Angiotensin Receptor Blocking Activity. J. Diabetes. 54, 2005, 2460-2470.
Michalik, L; Auwerx, J; Berger, J.P; et al W. International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. J. Pharmacol. Rev 58, 2006, 726-741.
Berger, J; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med. 53, 2002, 409-435.
Tove Östberg, Stefan Svensson, Göran Selén, et al. A New Class of Peroxisome Proliferator-activated Receptor Agonists with a Novel Binding Epitope Shows Antidiabetic Effects. J. Biol. Chem.279, 2004, 41124-41130.
Feige, J.N; Gelman, L; Michalik, L; et al. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid. Res. 45, 2006, 120-159.
Kletzien, R. F; Clark, S. D; Ulrich, R. G. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol.Pharmacol. 41, 1992, 393-398.
Rajesh S Savkur & Anne R Miller. Investigational PPAR-γ agonists for the treatment of Type2 diabetes. Informa Pharma Science. 15, 2006, 763-778.
I-Lin Lu, Chien-Fu Huang, Yi-Hui Peng, et al . Structure-Based Drug Design of a Novel Family of PPARγ Partial Agonists: Virtual Screening, X-ray Crystallography, and in Vitro/in Vivo Biological Activities. J. Med. Chem.49, 2006, 2703–2712.
http://www.rcsb.org/pdb/explore/explore.do?structureId=2Q6S
Humphries, P.S; Almaden, J.V; Barnum, S.J; et al Pyridine-2-propanoic acids: Discovery of dual PPARα/γ agonists as antidiabetic agents. Bioorg. Med. Chem. Lett.16, 2006, 6116-6119.
Humphries, P.S; Almaden, J.V; Barnum, S.J; et al; Pyridine-2-propanoic acids: Discovery of dual PPARα/γ agonists as antidiabetic agents. Bioorg. Med. Chem.16, 2006, 6120-6123.
Morris, G.M; Goodsell, D.S; Halliday, R.S; et al Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.19, 1998, 1639-1662.
Weiner, S.J; Kollman, P.A; Case, D.A; et al A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc.106, 1984, 765-784.
Refbacks
- There are currently no refbacks.