Molecular mechanisms adopted by abiotic stress tolerant Pseudomonas fluorescens (NBAII-PFDWD) in response to in vitro osmotic stress

Jump To References Section

Authors

  • ICAR, National Bureau of Agricultural Insect Resources, Hebbal, Bellary Road, Bangalore – 560024, Karnataka ,IN
  • ICAR, National Bureau of Agricultural Insect Resources, Hebbal, Bellary Road, Bangalore – 560024, Karnataka ,IN
  • ICAR, National Bureau of Agricultural Insect Resources, Hebbal, Bellary Road, Bangalore – 560024, Karnataka ,IN

DOI:

https://doi.org/10.18311/jbc/2018/20019

Keywords:

MALDI- TOF, osmotic potential, osmotic stress, Pseudomonas fluorescens, PEG 6000

Abstract

Water stress in one of the limiting factors which influences the plant growth. Microbes being as a partner are an integral part of the ecosystem which influences the plant growth under stress. In the present study, Pseudomonas fluorescens (NBAII- PFDWD) subjected to osmotic stress by altering osmotic potential (-10.28 MPa and -26.82 MPa) using Polyethylene Glycol (PEG) 6000 in its growth media revealed expression of proteins which modulates its cell processes. MALDI TOF studies of selected spots from 2D gel analysis of P. fluorescens (NBAII- PFDWD) grown under different osmotic stresses revealed that the stress kindled genes which were involved in production of osmoprotectants, genes encoding DNA damage repair and increased the translational accuracy. The studies also showed that P. fluorescens possesses unique mechanisms for survival under osmotic stress. The studies indicate the diverse expression of proteins in P. fluorescens (NBAII- PFDWD) under different osmotic potentials which helped them to mitigate impact of osmotic stress. The present method unravelled the mechanisms adopted by P. fluorescens (NBAII- PFDWD) to thrive under osmotic stress. The bacterium is potential stress tolerant isolate which can be exploited as a plant growth promoting rhizobacteria for agricultural crops grown in stressed soils.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2018-07-13

How to Cite

Ashwitha, K., Rangeshwaran, R., & Sivakumar, G. (2018). Molecular mechanisms adopted by abiotic stress tolerant <i>Pseudomonas fluorescens</i> (NBAII-PFDWD) in response to in vitro osmotic stress. Journal of Biological Control, 32(1), 52–61. https://doi.org/10.18311/jbc/2018/20019

Issue

Section

Research Articles
Received 2018-02-16
Accepted 2018-04-18
Published 2018-07-13

 

References

Ashwitha K, Rangeshwaran R, Vajid NV, Sivakumar G, Jalali SK, Rajalakshmi K and Manjunath H. 2013. Characterization of abiotic stress tolerant Pseudomonas spp. occurring in Indian soils. J Biol Control. 27: 319– 328.

Atia A, Alrawaiq N, Abdullah A. 2014. A review of NAD(P) H:Quinone oxidoreductase 1 (NQO1); A multifunctional antioxidant enzyme. J Appl Pharma Sci. 4: 118–122.

Auriol A, Bestel-Corre G, Claude J, Soucaille P, Meynial-Salles I. 2011. Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. PNAS 108: 1278–1283. https://doi.org/10.1073/ pnas.1010431108 PMid:21205901 PMCid:PMC3029715

Benitez-Paez A, Villarayo M and Armengod. 2012. The Escherichia coli RlmN methyltransferase is a dualspecificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA 18: 1783–1795. https://doi.org/10.1261/rna.033266.112 PMid:22891362 PMCid:PMC3446703

Beyenback KW, Wiezoerck H. 2006. The V-type H + ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol. 209: 577-589. https://doi.org/10.1242/jeb.02014 PMid:16449553

Boor KJ. 2006. Bacterial stress responses: What doesn't kill them can make them stronger. PLoS Biol. 4: 0018-0023.

Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A. and Cate JHD. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol. 14: 727-732. https://doi.org/10.1038/nsmb1271%20 PMid:17660832

Caldas TD, Yaagoubi AE, Richarme G. 1998. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem. 273: 11478–11482. https://doi.org/10.1074/ jbc.273.19.11478. PMid:9565560

Cameron A, Fridrich E, Huynh S, Parker CT and Gaynor EC. 2012. Hyperosmotic stress response of Campylobacter jejuni. J Bacteriol. 194: 6116–6130. https://doi.org/10.1128/JB.01409-12 PMid:22961853 PMCid:PMC3486418

Chen M, Cao J, Zheng C, Liu Q. 2006. Directed evolution of an artificial bifunctional enzyme, c-glutamyl kinase/cglutamyl phosphate reductase, for improved osmotic tolerance of Escherichia coli transformants. FEMS Microbiol Lett. 263: 41–47. https://doi.org/10.1111/ j.15746968.2006.00397.x PMid:16958849

Cohen BE. 2014. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: Challenges and opportunities for antibiotic discovery. Antimicrob Agents Chemother. 58: 640–646. https://doi.org/10.1128/AAC.02095-13 PMid:24295980 PMCid:PMC3910827

Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 53: 121-147. PMid:2651863 PMCid:PMC372720

Feng G, Tsui HT, Winkler ME. 1996. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 178: 2388–2396. https://doi.org/10.1128/jb.178.8.2388-2396.1996 PMid:8636043 PMCid:PMC177950

Freeman BC, Chen C and Beattie GA. 2010. Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol. 12: 1486–1497. PMid:20192963

Freeman BC, Chen C, Yu X, Nielsen X, Peterson, Beattie GA. 2013. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol. 195: 4742– 4752. https://doi.org/10.1128/ JB.00787-13 PMid:23955010 PMCid:PMC3807433

Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, Longerich S, Szitgety SK, Winkler ME, Rosenberg SM. 1997. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 11: 2426–2437. https://doi.org/10.1101/gad.11.18.2426 PMid:9308969 PMCid:PMC316514

Janoshi L, Shimizu I, Kaji A. 1994. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc Natl Acad Sci. 91: 4249-4253. https://doi.org/10.1073/pnas.91.10.4249

Jensen KF, Larsen S. 2003. Dihydroorotate dehydrogenase of Escherichia coli. pp.11-21 In: Selinsky, B.S. (Eds.), Membrane protein protocols; expression, purification and characterization. Humana Press, Towata, NJ. https://doi.org/10.1385/1-59259-400-X:11

Karas VO, Westerlaken I, Meyer AS. 2015. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J Bacteriol. 197: 3206-3215. https://doi.org/10.1128/JB.00475-15 PMid:26216848 PMCid:PMC4560292

Kawasaki S, Satoh T, Todoroki M, Niimura Y. 2009. b-Type dihydroorotate dehydrogenase is purified as a H2O2 -forming NADH oxidase from Bifidobacterium bifidum. Appl Environ Microbiol. 75: 629–636. https://doi.org/10.1128/ AEM.02111-08 PMid:19060157 PMCid:PMC2632149

Kets EPW, Galinski EA, de Wit M, de Bont JAM, Heipieper HJ. 1996. Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol. 178: 6665– 6670. https://doi.org/10.1128/jb.178.23.66656670.1996 PMid:8955280 PMCid:PMC178559

Kuhlmann AU, Hoffmann T, Bursy J, Jebbar M, Bremer E. 2011. Ectoine and hydroxyectoine as protectants against osmotic and cold stress: Uptake through the SigB-controlled betaine-choline-carnitine transportertype carrier EctT from Virgibacillus pantothenticus J Bacteriol. 193: 4699–4708. https://doi.org/10.1128/ JB.05270-11 PMid:21764932 PMCid:PMC3165649

Kusuya Y, Kurokawa K, Ishikawa S, Ogasawara N, Oshima T. 2011. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells J Bacteriol. 193: 3090-3099. https://doi.org/10.1128/JB.00086-11 PMid:21515770 PMCid:PMC3133182

Larsen NA, Nash TJ, Morningstar M, Shapiro AB, Joubran C, Blackett CJ, Patten AD, Boriack- Sjodin A, Doig P. 2012. An aminoquinazoline inhibitor of the essential bacterial cell wall synthetic enzyme GlmU has a unique non-protein-kinase-like binding mode. Biochem J. 446: 405–413. https://doi.org/10.1042/BJ20120596 PMid:22721802

Lau SKP, Fan RYY, Ho TCC, Wong GKM, Tsang AKL, Teng JLL, Chen W, Watt RM, Curreem SOT, Tse H, Yuen K, Woo PCY. 2011. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci. 1: 22–49. https://doi.org/10.1186/2045-37011-22 PMid:21711489 PMCid:PMC3135505

Lenhart JS, Brandes ER, Schroeder JW, Sorenson RJ, Showalter HD, Simmons LA. 2014. RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress. J Bacteriol. 196: 2851–2860. https://doi.org/10.1128/JB.01494-14 PMid:24891441 PMCid:PMC4135682

Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y. 2012. Transcription elongation factor GreA has functional chaperone activity. PLoS One 7: 47521-47527. https://doi.org/10.1371/journal.pone.0047521 PMid:23251328 PMCid:PMC3521015

Liang X, Zhang L, Natarajan SK, Becker DF. 2013. Proline mechanisms of stress survival. Antioxid Redox Signal. 19: 998-1011. https://doi.org/10.1089/ars.2012.5074 PMid:23581681 PMCid:PMC3763223

Lindgren JK, Thomas VC, Olson ME, Chaudhari SS, Nuxoll AS, Schaeffer CR, Lindgren KE, Jones J, Zimmerman MC, Dunman PM, Bayles KW, Fey PD. 2014. Arginine deaminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol. 196: 2277–2289. https://doi.org/10.1128/ JB.00051-14 PMid:24727224 PMCid:PMC4054176

Liu X, Basu U, Miller P, McMullen L. 2014. Stress and adaptation of Listeria monocytogenes 08-5923 exposed to a sublethal dose of carnocyclin A. Appl Environ Microbiol. 80: 3835-3841. https://doi.org/10.1128/AEM.00350-14%20 PMid:24747893%20 PMCid:PMC4054213

Louis P, Galinski EA. 1997. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiol. 143: 1141-1149. https:// doi.org/10.1099/00221287-143-4-1141 PMid:9141677

Lovett ST. 2011. The DNA exonucleases of Escherichia coli. EcoSal. Plus. doi:10.1128/ecosalplus.4.4.7. https://doi.org/10.1128/ecosalplus.4.4.7

Lusetti SL, Cox MM. 2002. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Ann Rev Biochem. 71: 71-100. https://doi.org/10.1146/annurev.biochem.71.083101.133940 PMid:12045091

Macomber L, Elsey SP, Hausinger RP. 2011. Fructose1,6-bisphosphate aldolase (class II) is the primary site of nickel toxicity in Escherichia coli. Mol Microbiol. 82: 12911300. https://doi.org/10.1111/j.1365-2958.2011.07891.x PMid:22014167 PMCid:PMC3225726

Maguire M, Coates ARM, Henderson B. 2002. Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 7: 317–329. https://doi.org/10.1379/14661268%282002%29007%3C0317:CUISOC%3E2.0.CO%3B2

Mande SC, Kumar SCM. 2013. Evolution of bacterial chaperonin 60 paralogues and moonlighting activity. pp. 101-121. In: Henderson, B. (Ed.), Moonlighting cell stress proteins in microbial infections, heat shock proteins. Springer Science, Dordrecht. https://doi.org/10.1007/978-94-007-6787-4_7

Marquis RE, Bender GR, Murray DR, Wong A. 1987. Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol. 53: 198–200. PMid:3103530 PMCid:PMC203628

Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS. 2017. Abitoic stress reponses and Microbe- mediated mitigation in plants: The omics strategies. Fron Plant Sci. 8:172. https://doi.org/10.3389/fpls.2017.00172 PMid:28232845 PMCid:PMC5299014

Mochalkin I, Lightle S, Zhu S, Ohren JF, Spessard C, Chirgadze NY, Banotai C, Melnick M, McDowell L. 2007. Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Prot Sci. 16: 2657–2666. https://doi.org/10.1110/ ps.073135107 PMCid:PMC2222810

Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G. 1998. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol. 27: 899–914. https://doi. org/10.1046/j.1365-2958.1998.00735.x PMid:9535081

Nurenberg E, Tampe R. 2013. Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci. 38: 64-74. https://doi.org/10.1016/j.tibs.2012.11.003 PMid:23266104

Oliver A, Baquero F, Blazquez J. 2002. The mismatch repair system (mutS, mutL and uvrD bgenes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol. 43:1641–1650. https://doi.org/10.1046/j.1365-2958.2002.02855.x PMid:11952911

Pastor M, Salvador M, Argando-a M, Bernal V, Reina-Bueno M, Csonka LN, Iborra LJ, Vargas C, Nieto NJ, Cánovas M. 2010. Ectoines in cell stress protection: Uses and biotechnological production. Biotech Adv. 28: 782– 801. https://doi.org/10.1016/j.biotechadv.2010.06.005 PMid:20600783

Paul D, Dineshkumar N, Nair S. 2006. Proteomics of a plant growth promoting rhizobacterium, Pseudomonas fluorescnes MSP-393, subjected to salt shock. World J Microbiol Biotechnol. 22: 369-374. https://doi.org/10.1007/s11274-005-9043-y

Perez-Arellano I, Carmona-Alvarez F, Martınez AI, Rodrıguez-Dıaz J, Cervera J. 2010. Pyrroline-5carboxylate synthase and proline biosynthesis: From osmotolerance to rare metabolic disease. Prot Sci. 1: 372-382. https://doi.org/10.1002/pro.340

Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK. 2013. Analysis of proteins expressed by an abiotic stress tolerant Pseudomonas putida (NBAII-RPF9) isolate under saline and high temperature conditions. Curr Microbiol. 67: 659–667. https://doi.org/10.1007/s00284-0130416-4 PMid:23828182

Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S. 2011. Mechanism of RecO recruitment to DNA by singlestranded DNA binding protein. Nucleic Acids Res. 1: 1-10. https://doi.org/10.1093/nar/gkr199

Sandhya V, Ali SkZ, Grover M, Reddy G, Venkateswarlu B. 2009. Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fert Soil. 46: 17-26. https://doi.org/10.1007/s00374-009-0401-z

Schelin J, Lindmark F, Clarke A.K. 2002. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiol. 148: 2255–2265. https://doi.org/10.1099/00221287-148-7-2255%20 PMid:12101312

Song L, Wang G, Malhotra A, Deutscher MP, Liang W. 2016. Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res. 44: 1979-1988. https://doi.org/10.1093/nar/gkw053 PMid:26847092 PMCid:PMC4797298

Starosta AL, Lassak E, Jung K, Wilson DN. 2014. The bacterial translation stress response. FEMS Microbiol Rev. 38: 172–1201. https://doi.org/10.1111/1574-6976.12083 PMid:25135187 PMCid:PMC4227928

Takahagi M, Iwasaki H, Nakata A, Shinagawa H. 1991. Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J Bacteriol. 173: 5747-5753. https:// doi.org/10.1128/jb.173.18.5747-5753.1991%20 PMid:1885548 PMCid:PMC208306

Torrents E, Grinberg I, Gorovitz B, Lundstrom H, Borovok I, Aharonowitz Y, Sjoberg B, Cohen, G. 2007. NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J Bacteriol. 189: 5012– 5021. https: // doi. org/ 10.1128/JB.00440-07 PMid : 17496099 PMCid : PMC1951866

Udaondo Z, Duque E, Fernandez M, Molina L, Torre J, Bernal P, Niqui J, Pini C, Roca A, Matilla MA, MolinaHenares MA, Silva-Jimenez H, Navarro-Aviles G, Busch A, Lacal J, Krell T, Segura A and Ramos J. 2012. Analysis of solvent tolerance in Pseudomonas putida DOT-T1E based on its genome sequence and a collection of mutants. FEBS Lett. 586: 2932–2938. https://doi.org/10.1016/j.febslet.2012.07.031 PMid:22819823

Villarroya M, Perez-Roger I, Macia F, Armengod ME. 1998. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair. EMBO J. 17: 1829–1837. https://doi.org/10.1093/ emboj/17.6.1829 PMid:9501104 PMCid:PMC1170530

Wood JM. 1999. Osmosensing by bacteria: Signals and membrane-based sensors. Microbiol Mol Biol Rev. 63: 230-262. PMid:10066837 PMCid:PMC98963

Wood JM. 2015. Bacterial responses to osmotic challenges. J Gen Physiol. 145: 381-388. https://doi.org/10.1085/jgp.201411296%20PMid:25870209%20 PMCid:PMC4411257

Zhang YM, Rock CO. 2008. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res. 49: 1867–1874. https://doi.org/10.1194/jlr.R800005-JLR200 PMid:18369234 PMCid:PMC2515527