Antagonism and molecular identification of Trichoderma isolated from rhizosphere of medicinal plants

Jump To References Section


  • Upis Faculdades Integradas, Planaltina-DF ,BR
  • Federal University of Goiás, School of Agronomy, Phytosanitary Department, Phytopathology Research Center, Goiânia - Nova Veneza Highway, Km 0, s/n, 74690-900 ,BR
  • Upis Faculdades Integradas, Planaltina-DF ,BR
  • Federal University of Goiás, School of Agronomy, Phytosanitary Department, Phytopathology Research Center, Goiânia - Nova Veneza Highway, Km 0, s/n, 74690-900 ,BR
  • Upis Faculdades Integradas, Planaltina-DF ,BR
  • Federal University of Goiás, School of Agronomy, Phytosanitary Department, Phytopathology Research Center, Goiânia - Nova Veneza Highway, Km 0, s/n, 74690-900 ,BR
  • Federal University of Goiás, School of Agronomy, Phytosanitary Department, Phytopathology Research Center, Goiânia - Nova Veneza Highway, Km 0, s/n, 74690-900 ,BR



Antagonistic fungi, Biological plant disease control, Dual culture, Organic cultivation, Phytopathogenic fungi, Phylogeny., Antagonistic fungi, biological plant disease control, dual culture, organic cultivation, phytopathogenic fungi, phylogeny
Biological control


Trichoderma is the most studied and used fungal agent in biological disease control worldwide. Its prospection is a necessary routine, in order to select more effective and specific strains for the different existing agro pathosystems. This work reports the in vitro antagonism (Mycelial Growth Inhibition - MGI) of five Trichoderma isolates, obtained from rhizospheric and organic soil of medicinal plants cultivated in Brazil, to five different phytopathogenic fungi and their molecular identification based on actin (act), calmaldulin (cal), rDNA gene (ITS) and translation elongation factor 1-α (tef1-α). Regarding the fungus Macrophomina phaseolina, the MGI varied between 63.33 and 67.03%; for Fusarium verticillioides between 67.20 and 85.92%; Phaeocytostroma sacchari between 84.00 and 92.90%; in the case of Sclerotinia sclerotiorum, the inhibition was total (100%), and for Sclerotium rolfsii, the antagonism was between 62.03 and 79.07%. According to the molecular phylogeny performed, concatenated analysis of the genetic markers revealed that the five antagonist fungi belong to the Trichoderma afroharzianum species. It is concluded that the T. afroharzianum isolates evaluated showed good levels of in vitro control of the plant pathogenic fungi in question and will be studied via in vivo tests and in plant growth promotion.


Download data is not yet available.


Metrics Loading ...




How to Cite

Marques, E., Abreu, V. P., de Oliveira, D. R., Silva, M. R., Santos, F. H. C., Castro, K. H. M. de, & Cunha, M. G. da. (2022). Antagonism and molecular identification of <i>Trichoderma</i> isolated from rhizosphere of medicinal plants. Journal of Biological Control, 36(1), 07–16.



Research Articles
Received 2022-04-25
Accepted 2022-12-12
Published 2022-12-14



Oliveira TAS, Mello SCM. 2019. Antagonist activity of Trichoderma harzianum against Sclerotinia sclerotiorum from common bean. Acta Iguazu, 8(1): 60-67. actaiguaz.v8i1.19067

Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107(3):558-590. 147 PMid:25661720 PMCid:PMC4885665 DOI:

Choudhary A, Ashraf S, Musheer N. 2021. The antagonistic effect of locally isolated Trichoderma spp. against dry root rot of mungbean. Arch Phytopathol Plant Prot, 54:1-6. DOI:

Coque JJR, Álvarez-Pérez JM, Cobos R, González-García S, Ibáñez AM, Diez Galán A, Calvo-Peña C. 2020. Advances in the control of phytopathogenic fungi that infect crops through their root system. Adv Appl Microbiol, 111:123-170. bs.aambs.2020.01.003 PMid:32446411 DOI:

Dennis C, Webster J. 1971. Antagonistic properties of species-groups of Trichoderma III. Hyphal interactions. T Brit Mycol Soc, 57(3):363-369. S0007-1536(71)80050-5 DOI:

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull, 19(1):11-15.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32(5):1792-1797. gkh340 PMid:15034147 PMCid:PMC390337 DOI:

El-Benawy NM, Abdel-Fattaha GM, Ghoneemb KM, Shabana YM. 2020. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egypt J Basic Appl Sci, 7(1):267-280. https://doi. org/10.1080/2314808X.2020.1809849 DOI:

Ferreira DF. 2014. Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciênc Agrotec, 38(2):109-112. DOI:

Hall TA. 1999. BioEdit: A User-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41:95-98.

He D-C, He M-H, Amalin DM, Liu W, Alvindia DG, Zhan J. 2021. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens, 10(10):1311 https://doi. org/10.3390/pathogens10101311 PMid:34684260 PMCid:PMC8541133 DOI:

Inglis PW, Mello SCM, Martins I, Silva JBT, Macêdo K, Sifuentes DN, Valadares-Inglis CM. 2020. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS ONE, 15(3):e0228485. PMid:32130211 PMCid:PMC7055844 DOI:

Kamel DM, Farag FM, Arafa RA, Essa T. 2020. Bio-Control potentials of Trichoderma spp. against Sclerotium rolfsii the causative of root and crown rot in tomato, common bean and cabbage. Egypt J Phytopathol, 48:122-136. DOI:

Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci, 10:845. PMid:31379891 PMCid:PMC6658832 DOI:

Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV. 2014. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol, 141(3):523-543. DOI:

Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS and Vágvölgyi C. 2018. Molecular tools for monitoring Trichoderma in agricultural environments. Front Microbiol, 9:1599. PMid:30090089 PMCid:PMC6068273 DOI:

Kumar R, Kumar S, Chaudhary B. 2021. Effects of Trichoderma species on the growth of Fusarium verticillioides. Bangladesh J Bot, 50(2):423-425. DOI:

Marques E, Martins I, Cunha MOC, Lima MA, Silva JBT, Silva JP, Inglis PW, Mello SCM. 2016. New isolates of Trichoderma antagonistic to Sclerotinia sclerotiorum. Biota Neotrop, 8(1): e20170418. https:// DOI:

Martin JP. 1950. Use of acid, rose-bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci, 69:215-232. 195003000-00006 DOI:

Martínez-Salgado SJ, Andrade-Hoyos P, Lezama CP, Rivera- Tapia A, Luna-Cruz A, Romero-Arenas O. 2021. Biological control of charcoal rot in peanut crop through strains of Trichoderma spp., in Puebla, Mexico. Plants, 10(12):2630. PMid:34961101 PMCid:PMC8707606 DOI:

Menten JOM, Minussi CC, Castro C, Kimati H. 1976. Efeito de alguns fungicidas no crescimento micelial de Macrophomina phaseolina (Tass) Goid “in vitro”. Fitopatol Bras, 1:57-66.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA. pp. 1-8. GCE.2010.5676129 DOI:

Montoya QV, Meirelles LA, Chaverri P, Rodrigues A. 2016. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa. Antonie Van Leeuwenhoek 9(5):633-51. s10482-016-0666-9 PMid:26885975 DOI:

O’Donnell K, Sutton DA, Rinaldi MG, Gueidan C, Crous PW, Geiser DM. 2009. Novel multilocus sequence typing scheme reveals high genetic diversity of human-pathogenic members of the Fusarium incarnatum, F. equiseti and F. chlamydosporum species complexes within the United States. J Clin Microbiol, 47:3851-3861. PMid:19828752 PMCid:PMC2786663 DOI:

Paul NC, Park S, Liu H, Lee JG, Han GH, Kim H, Sang H. 2021. Fungi associated with postharvest diseases of sweet potato storage roots and in vitro antagonistic assay of Trichoderma harzianum against the diseases. J Fungi, 7(11):927. mPMid:34829216 PMCid:PMC8625119 DOI:

Pellan L, Durand N, Martinez V, Fonana A, Schorr-Galindo S, Strub C. 2020. Commercial biocontrol agents reveal contrasting comportments against two mycotoxigenic fungi in cereals: Fusarium graminearum and Fusarium verticillioides. Oxins, 12(3):152. toxins12030152 PMid:32121314 PMCid:PMC7150872 DOI:

Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ and Xu BL. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol, 12:670135. PMid:34122383 PMCid:PMC8192705 DOI:

Pfordt A, Schiwek S, Karlovsky P, von Tiedemann A. 2020. Trichoderma afroharzianum ear rot-a new disease on maize in europe. Front Agron, 2:547758. https://doi. org/10.3389/fagro.2020.547758 DOI:

Posada D, Buckley T. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol, 53:793-808. https://doi. org/10.1080/10635150490522304 PMid:15545256 DOI:

Rambaut A. 2009. FigTree version 1.3.1 [computer program]. Available from:

Rannala B, Yang Z. 1996. Probability Distribution of Molecular Evolutionary Trees: A New Method of Phylogenetic Inference. J. Mol. Evol, 43(3):304-31. PMid:8703097 DOI:

Ronquist FM, Teslenko P, Van der Mark DL, Ayres A, Darling S, Höhna B, Larget L, Liu MA, Suchard, Huelsenbeck JP. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol, 61:539-542. sysbio/sys029 PMid:22357727 PMCid:PMC3329765 DOI:

Silva JBT, Marques E, Menezes JE, Silva JP, Mello SCM. 2020. Population density of Trichoderma fungi in natural environments and agrosystems of a Cerrado area. Biota Neotrop, 20(4):e20201048.m https://doi. org/10.1590/1676-0611-bn-2020-1048 DOI:

Sumida CH, Daniel JFS, Araujod APCS, Peitl DC, Abreu LM, Dekker RFH, Canteri MG. 2018. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Sci Technol, 28(2):142-156. 1430743 DOI:

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol, 30(1):2725-2729. https://doi. org/10.1093/molbev/mst197 molbev/mst197 PMid:24132122 PMCid:PMC3840312 DOI:

White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Innis, MA.; Gelfand, DH.; Sninsky, JJ.; White, TJ., editors. New York: Academic Press; p. 315-322. 8.50042-1PMid:1696192 DOI:

Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. 2019. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10(3):127-140. https:// DOI:

Yassin MT, Mostafa A A-F, Al-Askar AA, Sayed SRM, Rady AM. 2021. Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some fusarial pathogens causing stalk rot disease of maize, in vitro. J King Saud Univ Sci, 33(3):101363. https://doi. org/10.1016/j.jksus.2021.101363 DOI:

Zin NA, Badaluddin NA. 2019. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci, 65(2):168-178. aoas.2020.09.003 DOI: