Ultrastructure and morphometric characteristics of Oecophylla smaragdina (Fabricius, 1775) (Hymenoptera: Formicidae)

Jump To References Section

Authors

  • Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai – 627002, Tamil Nadu ,IN
  • Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai – 627002, Tamil Nadu ,IN
  • Department of Zoology, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, Theni – 625601, Tamil Nadu ,IN
  • Department of Zoology, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, Theni – 625601, Tamil Nadu ,IN
  • Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai – 627002, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2024/35481

Keywords:

Morphometric characteristics, Oecophylla smaragdina, Principal Component Analysis (PCA), taxonomic investigations

Abstract

In this study, we explored various aspects of Oecophylla smaragdina, a potential biocontrol agent, evolution by examining its morphometric characteristics. We employed an intensive All-out search method (AOSM) to gather specimens from multiple locations in Vadakku Karaseri, Tamil Nadu. Our analysis involved measuring 16 morphological traits and indices, including Total Length, Head Width, Head Length, Eye Length and more, using specimens from five colonies in each locality. By calculating various morphometric indices, we assessed specific features and conducted a Principal Component Analysis (PCA) to determine the significance of head-related variables, antennae, and body size in shaping morphometric variation. Our study also revealed positive and negative associations between different morphometric variables, as highlighted by Pearson correlation coefficients. Furthermore, we used a Scanning Electron Microscope to examine the ultrastructure of the abdomen, revealing distinct features such as a one-jointed pedicel and modifications of the poison gland and stings. This comprehensive research provides valuable insights into O. smaragdina morphometric characteristics, enhancing our understanding of its variability and potential adaptations in various habitats.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-11

How to Cite

KARTHICK, M., SAMUEL, B., SELVAM, I. K., SAGAYA RANI, C., & AZHAGU RAJ, R. (2024). Ultrastructure and morphometric characteristics of <i>Oecophylla smaragdina</i> (Fabricius, 1775) (Hymenoptera: Formicidae). Journal of Biological Control, 38(1), 73–81. https://doi.org/10.18311/jbc/2024/35481

Issue

Section

Research Articles
Received 2023-10-29
Accepted 2024-02-27
Published 2024-04-11

 

References

Afzal, G., 2013. Phylogenetic analysis and prey identification of spiders from wheat fields using COI as molecular marker, [Doctoral dissertation, University of Agriculture, Faisalabad, Pakistan].

Ambika, S., and Nalini, T. 2019. Nest composition, inward and outward flows of Oecophylla smaragdina Fabricius (Hymenoptera: Formicidae) in selected fruit crops. Plant Arch, 19(2): 2781-2784.

Bahder, B. W. 2009. Taxonomy of the soldierless termites (Isoptera: Termitidae: Apicotermitinae) of the Dominican Republic based on morphological characters and genetic analysis of mtDNA and nuclear DNA, [Doctoral dissertation, University of Florida].

Barr, D., Boven, J. V., and Gotward Jr, W. H. 1985. Phenetic studies of African army ant queens of the genus Dorylus (Hymenoptera: Formicidae). Syst Entomol, 10(1): 1-10. https://doi.org/10.1111/j.1365-3113.1985.tb00560.x

Bharti, H., and S. Silla. 2011. Notes on the life history of Oecophylla smaragdina (Fabricius) and its potential as biological control agent. Halteres, 3: 57-64.

Blaxter, M., and Floyd, R. 2003. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol, 18(6): 268-269. https://doi.org/10.1016/S0169- 5347(03)00102-2

Boudinot, B. E., and Fisher, B. L. 2013. A taxonomic revision of the Meranoplus F. Smith of Madagascar (Hymenoptera: Formicidae: Myrmicinae) with keys to species and diagnosis of the males. Zootaxa, 3635: 301- 339. https://doi.org/10.11646/zootaxa.3635.4.1

Bolton, B. 2011. Bolton’s catalogue and synopsis.

Branstetter, M. G. 2013. Revision of the Middle American clade of the ant genus Stenamma Westwood (Hymenoptera, Formicidae, Myrmicinae). ZooKeys, 295: 1-277. https://doi.org/10.3897/zookeys.295.4905

Cagniant, H., Espadaler, X., and Colombel, P. 1991. Biométrie et répartition de quelques populations d’Aphaenogaster (suprasp.) senilis (Hymenopteres Formicidae) du Bassin Méditerranéen Occidental et du Maroc. Vie et Milieu/Life and Environment, 61-71. https://doi.org/10.5962/p.289870

Crozier, R. H., Newey, P. S., Schluens, E. A., and Robson, S. K. 2010. A masterpiece of evolution-Oecophylla weaver ants (Hymenoptera: Formicidae). Myrmecol News, 13(5): 57-71.

Gadagkar, R., Nair, P., Chandrashekara, K., and Bhat, D. M. 1993. Ant species richness and diversity in some selected localities of Western Ghats. Hexapoda, 5(2): 79-94.

Gratiashvili, N., Kuschel, L., and Heinze, J. 2020. Morphometry and colony structure of ants of the genus Cardiocondyla (Hymenoptera: Formicidae) from Georgia. Zool Middle East, 66(4): 347-356. https://doi.org/10.1080/09397140.2020.1835216

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeont. Electr, 4(1): 1-9.

Hölldobler, B., and Wilson, E. O. 1990. The ants. Harvard University Press. https://doi.org/10.1126/science.248.4957.897

Jarman and Elliott. 2000. DNA evidence for morphological and cryptic Cenozoic speciations in the Anaspididae, ‘living fossils’ from the Triassic. J Evol Biol, 13(4): 624- 633. https://doi.org/10.1046/j.1420-9101.2000.00207.x

Jerdon Esq. T.C., 1854. VII. A catalogue of the species of ants found in Southern India. Ann Mag Nat Hist, 13(73), 45-56. https://doi.org/10.1080/03745485709496303

Lim, G. T., Kirton, L. G., Salom, S. M., Kok, L. T., Fell, R. D., and Pfeiffer, D. G. 2008. Mahogeny shoot borer control in Malaysia and prospect for biocontrol using weaver ants. J Trop For Sci, 20(3): 147-155.

Kaspari, M., and Weiser, M. D. 1999. The size-grain hypothesis and interspecific scaling in ants. Funct Ecol, 13(4): 530-538. https://doi.org/10.1046/j.1365-2435.1999.00343.x

Mele,P.V.,Cuc,N.T.T.,andHuis,A.V.2002.Direct and indirect influences of the weaver ants Oecophylla smaragdina on citrus farmers’ pest perceptions and management practices in Mekong Delta, Vietnam. Int J Pest Manag, 48: 225-232. https://doi.org/10.1080/09670870110118713

Patel, D., and Bhatt, N. 2020. Nesting, protective and foraging behavior of Oecophylla smaragdina (Weaver Ants) in Anand, Gujarat. Advances in Zoology and Botany, 8(4): 351-357. https://doi.org/10.13189/azb.2020.080407

Parag, P. M., and Deepak, D. B. 2021. Morphological and surface ultra-structural studies of legs in polymorphs of weaver ant Oecophylla smaragdina Fabricius (Hymenoptera: Formicidae) with reference to sensilla. Intern J Zool Invest, 7: 26-39. https://doi.org/10.18805/ijare.a-5411

Peng, R. K., and Christian, K. 2004. The weaver ant Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the Northern Territory of Australia. Int J Pest Manag, 50(2): 107-114. https://doi.org/10.1080/09670870410001658125

Peng, R., Christian, K., and Reilly, D. 2012. Biological control of the fruit‐spotting bug Amblypelta lutescens using weaver ants Oecophylla smaragdina on African mahoganies in Australia. Agric For Entomoly, 14(4): 428- 433. https://doi.org/10.1111/j.1461-9563.2012.00584.x

Queiroz, J. M. 2015. The influence of environmental complexity on the worker morphometry of ant assemblages. Sociobiology, 62(1): 23-27. https://doi.org/10.13102/sociobiology.v62i1.23-27

Raj, R. A., Sathish, R., Prakasam, A., Krishnamoorthy, D., Balachandar, M., and Tomson, M. 2017. Extraction and analysis of cuticular hydrocarbons in the weaver ant Oecophylla smaragdina (Fabricius) (Hymenoptera: Formicidae). Int J Fauna Biological Stud, 4(1): 102- 107.

Saarinen, E. V. 2006. Differences in worker caste behaviour of Oecophylla smaragdina (Hymenoptera: Formicidae) in response to larvae of Anthene emolus (Lepidoptera: Lycaenidae). Biol J Linn Soc, 88(3): 391-395. https://doi.org/10.1111/j.1095-8312.2006.00626.x

Seifert, B. 2002. The ant genus Cardiocondyla (Insecta: Hymenoptera: Formicidae)-a taxonomic revision of the C. elegans, C. bulgarica, C. batesii, C. nuda, C. shuckardi, C. stambuloffii, C. wroughtonii, C. emeryi, and C. minutior species groups. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 203-338. https://doi.org/10.1127/entom.gen/23/1999/251

Seifert,B.,Okita,I.,andHeinze,J.2017.Ataxonomicrevision of the Cardiocondyla nuda group (Hymenoptera: Formicidae). Zootaxa, 4290(2): 324-356. https://doi.org/10.11646/zootaxa.4290.2.4

Tiwari, R. 1999. Memoirs: 18 No. 4 - Taxonomic studies on ants of Southern India.

Tobin, J. E. 1991. A neotropical, rainforest canopy, ant community: Some ecological considerations. Ant-plant interactions. https://doi.org/10.1093/oso/9780198546399.003.0035

Verghese, A., Jayanthi, P. K., Sreedevi, K., Devi, K. S., and Pinto, V. 2013. A quick and non-destructive population estimate for the weaver ant Oecophylla smaragdina Fab. (Hymenoptera: Formicidae). Curr Sci, 641-646. https://doi.org/10.18520/cs/v123/i5/694-702