Entomopathogens and their role in insect pest management

Jump To References Section


  • School of Agriculture, Lovely Professional University, Phagwara – 144411, Punjab ,IN
  • School of Agriculture, Lovely Professional University, Phagwara – 144411, Punjab ,IN
  • School of Agriculture, Lovely Professional University, Phagwara – 144411, Punjab ,IN
  • School of Agriculture, Lovely Professional University, Phagwara – 144411, Punjab ,IN
  • School of Agriculture, Lovely Professional University, Phagwara – 144411, Punjab ,IN




Bacteria, entomopathogens, fungi, insect pest management, nematodes, viruses


Agricultural production faces significant challenges due to the loss of crop yields, highlighting the need for improvements in pest management methods to enhance productivity. Crop growers are increasingly pressured to minimize the use of chemical pesticides without compromising yields. However, managing pests has become more challenging due to pesticide resistance and limited product availability. Consequently, there is an urgent requirement for alternative approaches. Entomopathogens such as fungi, bacteria, viruses, and nematodes emerge as promising alternatives to broad-spectrum chemical insecticides. They have been widely employed to control insect pests in cultivated crops, employing successful strategies such as augmentation and classical biological control. These methods involve applying or introducing bacteria, baculoviruses, fungi, and nematodes. Utilizing entomopathogens offers numerous benefits beyond their effectiveness. These advantages encompass the capacity to treat expansive areas with a sole application, ensuring safety for both humans and non-target organisms. Additionally, their use leads to decreased pesticide residues in food, the conservation of natural enemies, and a boost in biodiversity within managed ecosystems. Entomopathogens present a viable solution by offering effective pest control while addressing environmental, human health, and ecosystem sustainability concerns. The primary emphasis of this review is on the present condition of bio-formulations, the pathogenicity associated with entomopathogens, their mode of action, and the possible implementation of diverse microbial formulations aimed at achieving sustainable pest management.


Download data is not yet available.


Metrics Loading ...




How to Cite

KONTHOUJAM AMBEDKAR SINGH, NANGKAR, I., LANDGE, A., RANA, M., & SRIVASTAVA, S. (2024). Entomopathogens and their role in insect pest management. Journal of Biological Control, 38(1), 1–17. https://doi.org/10.18311/jbc/2024/35752



Review Articles
Received 2023-11-30
Accepted 2024-02-14
Published 2024-04-11



Adang, M. J., Crickmore, N., and Jurat-Fuentes, J. L. 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv in Insect Phys, 47: 39-87. https://doi.org/10.1016/B978-0-12-800197-4.00002-6

Akhurst, R. J., and Boemare, N. E. 1990. Biology and taxonomy of Xenorhabdus. Entomopathogenic Nematodes in Biological Control (pp. 75–90). CRC Press. https://doi.org/10.1201/9781351071741-5

Ansari, M. A., Shah, F. A., and Butt, T. M. 2010. The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci Tech, 20(1): 99-105. https://doi.org/10.1080/09583150903420031

Arif, B. M., Pavlik, L., Haeussinger, D., Vlak, J. M., and van Oers, M. M. 2007. In vivo modulation of innate cellular immune response of Trichoplusia ni by Autographa californica multiple nucleopolyhedrovirus. J Gen Virol, 88(10): Article 27112719.

Askary, T. H., and Abd-Elgawad, M. M. M. 2021. Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions. Egypt J Bìol Pest Control, 31: 42. https://doi.org/10.1186/s41938-021-00391-9

Becker, N. 1997. Microbial control of mosquitoes: Management of the Upper Rhine mosquito population as model programme. Parasitol Today, 13: 485-487. https://doi.org/10.1016/S0169-4758(97)01154-X

Blackburn, M. B., Domek, J. M., Gelman, D. B., Hu, J. S., and Hoover, K. 2003. Effect of protease and chitinase activity in Serratia marcescens on the pathogenesis of the entomopathogenic nematode Steinernema riobrave. J Invertebr Pathol, 83(1): 45-53.

Bravo, A., Gill, S. S., and Soberón, M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4): 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022

Butt, T. M., Jackson, C., and Magan, N. 2001. Fungi as biocontrol agents: Progress, problems and potential. CABI. https://doi.org/10.1079/9780851993560.0000

Cerenius, L., Söderhäll, K., and Persson, M. 2008. Invertebrate immunity. Springer.

Cory, J. S., and Franklin, M. T. 2012. Evolution and the microbial control of insects. Evol Appl, 5(5): 455-469. https://doi.org/10.1111/j.1752-4571.2012.00269.x

Cory, J. S., and Myers, J. H. 2003). The ecology and evolution of insect baculoviruses. Annual Review of Ecology Evol Systema, 34: 239-272. https://doi.org/10.1146/annurev. ecolsys.34.011802.132402

Cossentine, J. E., and Ingram, J. W. 2011. Entomophthora muscae. The house fly fungus. J Invertebr Pathol, 106(2): 226-232.

Dara, S. K. 2017. Entomopathogenic microorganisms: Modes of action and role in IPM [Blog]. Agriculture and Natural. UC. 7p.

de Barjac, H. 1978. Une nouvelle variété de Bacillus thuringiensis très toxique pour les moustiques: B. thuringiensis var israelensis sérotype H14. C R Acad Sci Paris, 286: 797-800.

Deans, C., and Krischik, V. 2023. The current state and future potential of microbial control of scarab pests. Appl Sci, 132): 766. https://doi.org/10.3390/app13020766

Deka, B., Baruah, C., and Babu, A. 2021. Entomopathogenic microorganisms: Their role in insect pest management. Egypt J Biol Pest Control, 31(1): 1-8.

Dhaliwal, G. S., Jindal, V., and Mohindru, B. 2015. Crop losses due to insect pests: Global and Indian scenario. Indian J Entomol, 77:165-168. https://doi.org/10.5958/0974-8172.2015.00033.4

Eilenberg, J., and Hokkanen, H. M. 2006. An ecological and societal approach to biological control. Springer. https://doi.org/10.1007/978-1-4020-4401-4

Eleftherianos, I., Boundy, S., Joyce, S. A., Aslam, S., and Marshall, J. W. 2007. Immune and stress response cross-talk in the Drosophilacellular immune response. Immunol Cell Biol, 85(6): 544-552.

Filha, M. H. N. L. S., Berry, C., and Regis, L. 2014. Lysinibacillus sphaericus: Toxins and mode of action, applications for mosquito control and resistance management. Adv in Insect Phys, 47: 89-176. https://doi.org/10.1016/B978-0-12-800197-4.00003-8

Fleuriet, A. 2018. Evolution of virus and host life history strategies. Adv in Virus Res, 101: 161-183.

Frank, J. H. 2009. Steinernema scapterisci as a biological control agent of scapteriscus mole crickets. In: A. E. Hajek, T. R. Glare, & M. O’Callaghan (Eds). Use of microbes for control and eradication of invasive arthropods. progress in biological control, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8560-4_7

Fuxa, J. R. 2004. Ecology of insect nucleopolyhedroviruses. Agric for Entomol, 6(3): 325-332.

Gangwar, P., Trivedi, M., and Tiwari, R. K. 2021. Entomopathogenic bacteria. In: Omkar (Eds). Microbial approaches for insect pest management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3595-3_2

Gindin, G., Levitin, B., Glazer, I., Soroker, V., and Samish, M. 2006. Formulations of the Nucleopolyhedrovirus of the Red Palm Weevil (Coleoptera: Curculionidae). J Econ Entomol, 99(3): 652-658.

Glare, T. R., Jurat-Fuentes, J. L., and O’Callaghan, M. 2017. Basic and applied research: Entomopathogenic bacteria. Microbial control of insect and mite pests (pp. 47-67). Academic Press. https://doi.org/10.1016/B978-0-12-803527-6.00004-4

Granados, R. R., and Williams, K. A. 1986. In vivo infection and replication of baculoviruses. In: R. R. Granados, & B. A. Federici (Eds). The biology of baculoviruses (pp. 89-108). CRC Press, Boca Raton.

Gryganskyi, A. P., Golan, J., and Hajek, A. E. 2022. Season- long infection of diverse hosts by the entomopathogenic fungus Batkoa major. PLoS One, 17(5): Article e0261912. https://doi.org/10.1371/journal.pone.0261912

Guillet, P., Kurtak, D.C., Phillipon, B., and Meyer, R. 1990. Use of Bacillus thuringiensis for onchorcercosis control in West Africa. In: H. de Barjac, & D. Sutherland (Eds.), Bacterial Control of Mosquitoes and Black-Flies, first ed. (pp. 187–201), Rutgers University Press, New Brunswick. https://doi.org/10.1007/978-94-011-5967-8_11

Gupta, K. 2019. https://www.slideshare.net/DrSSShaw/krishna-gupta-139377633

Hafiza, T. G., Shafqat, S., and Fawad, Z. A. K. 2014. Entomopathogenic fungi as effective insect pest management tactic: A review. Appl Sci Bus, 1(1):10-18.

Hajek, A. E., and Eilenberg, J. 2018. Natural enemies and insect pest management 2nd ed., pp. 537-562). Cambridge University Press.

Hall, B. 2008. Strickberger’s evolution: The integration of genes, organisms and populations. Sudbury, Mass: Jones and Bartlett.

Harrison, R. L., and Hoover, K. 2014. Baculoviruses and other occluded insect viruses. In: G. W. Rohrmann (Ed.), Advances in Virus Research (Vol. 89, pp. 39-73). Academic Press. https://doi.org/10.1016/B978-0-12-384984-7.00004-X

Harrison, R. L., and Hoover, K. 2019 Baculoviruses and other occluded insect viruses (Ch. 4, pp.73-131). Insect Pathology. Academic Press. https://doi.org/10.1016/B978-0-12-384984-7.00004-X

Hartley, S. E., and Gange, A. C. 2009. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in amultitrophic context. Ann Rev Entomol, 54: 323-42. https://doi.org/10.1146/annurev.ento.54.110807.090614

Huger, A. M. 2005. The Cypoviruses: Virion structure and genome architecture. Insect Virology, 155-185.

Huger, A. M., and Käufer, N. F. 2008. Baculovirus expression vectors for insect cells in culture. Adv Virus Res, 72: 91-112.

Ignoffo, C. M. 1973. Development of a viral insecticide: Concept to commercialization. Exp Parasitol, 33: 380- 406. https://doi.org/10.1016/0014-4894(73)90041-6

Jehle, J. A., Huber, J., Jehle, J., and Huber, J. 2009. Baculoviruses of crustaceans. Baculovirus Molecular Biology, (pp. 297-318). NCBI.

Kajuga, J., Hategekimana, A., Yan, X., Waweru, B.W., Li, H., Li, K., Yin, J., Cao, L., Karanja, D., Umulisa, C., and Toepfer, S. 2018. Management of white grubs (Coleoptera: Scarabaeidae) with entomopathogenic nematodes in Rwanda. Egypt J Biol Pest Control, 28. https://doi.org/10.1186/s41938-017-0003-2

Kalha, C. S., Singh, P. P., Kang, S. S., Hunjan, M. S., Gupta, V., and Sharma, R. 2014. Entomopathogenic viruses and bacteria for insect-pest control. Integrated pest management (pp. 225-244). Academic Press. https://doi.org/10.1016/B978-0-12-398529-3.00013-0

Keller, S. 2006). Species of entomophthorales attacking aphids with description of two new species. Sydowia, 58(1): 38-74.

Khalil, A. E., El-Sherif, A. G., Bekhiet, M. A., and Kella, A. M. 2010. New trend for Meloidogyne javanica management by Myrothecium verrucaria (ditera) as promising biological agent. J Plant Protection and Pathology, Mansoura Univ, 1(7): 539-558. https://doi.org/10.21608/jppp.2010.86891

Koppenhofer, A. M., Shapiro-Ilan, D. I., and Hiltpold, I. 2020. Entomopathogenic nematodes in sustainable food production. Front Sustain Food Syst, 4. https://doi.org/10.3389/fsufs.2020.00125

Kumar, S., Kumar, S., Bhandari, D., and Gautam, M. P. 2020. Entomopathogens, pathological symptoms and their role in present scenario of agriculture: A review. Int J Curr Microbiol App Sci, 9(12): 2110-2124. https://doi.org/10.20546/ijcmas.2020.912.248

Lacey, L. A., and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol, 44(2): 218-225.

Lacey, L. A., Frutos, R., and Kaya, H. K. 2001. Insect pathogens as biological control agents: Do they have a future? Biol Control, 21(3): 230-248. https://doi.org/10.1006/bcon.2001.0938

Lacey, L. A., Frutos, R., Kaya, H. K., and Vail, P. 2015. Insect pathogens as biological control agents: Back to the future. J Inver Pathol, 132:1-41. https://doi.org/10.1016/j.jip.2015.07.009

Li, X., Men, X., Wang, J., Li, L., Cui, H., Song, Y., Fang, X., Song, Z., Guo, W., and Yu, Y. 2023. Curative efficacy of entomopathogenic nematodes against white grubs in honeysuckle fields. Front Sustain Food Syst, 7: Article 1155133. https://doi.org/10.3389/fsufs.2023.1155133

Li, Y., Garbutt, J. S., and Gottlieb, R. 2002. A densonucleosis virus from the common buckeye butterfly Junonia coenia. J Inverte Pathol, 802):117-128.

Liu, S., Gao, S., Zhang, W., Peng, L., Li, L., Zhou, X., and Zhang, Z. 2016. Transmission characteristics of a novel virus in the white-backed planthopper Sogatella furcifera. PLoS One, 11(3): Article e0153266.

Lomer, C. J., Bateman, R. P., Johnson, D. L., and Langewald, J. 2001. Biological control of locusts and grasshoppers. Annu Rev Entomol, 46: 667-702. https://doi.org/10.1146/ annurev.ento.46.1.667

López-Ferber, M. 2020). Insect viruses and pest management. Viruses, 12(431): 1–2. https://doi.org/10.3390/v12040431

Luz, C., Rocha, L. F., and Silva, I. G. 2004. Pathogenicity of Evlachovaea sp (Hyphomycetes), a new species isolated from Triatoma sordida, in Chagas’ disease vectors. Rev Soc Bras Med Trop, 37(2):189-91. https://doi.org/10.1590/S0037-86822004000200017

Mantzoukas, S., and Eliopoulos, P. A. 2020. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl Sci, 10: Article 360. https://doi.org/10.3390/app10010360

Margalit, J., and Dean, D. 1985. The story of B. thuringiensis var. israelensis. J Am Mosq Control Assoc, 1: 1–7.

Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M., and Buyer, J. 2007. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol, 57: 993- 999. https://doi.org/10.1099/ijs.0.64611-0

Meekes, E. T., Fransen, J. J., and van Lenteren, J. C. 2002. Pathogenicity of Aschersonia spp. against whiteflies Bemisia argentifolii and Trialeurodes vaporariorum. J Invertebr Pathol, 81(1):1-11. https://doi.org/10.1016/S0022-2011(02)00150-7

Milner, R. J. 2000. Current status of Metarhizium anisopliae insecticide in Australia. Biocontrol News and Info, 21: 47-50.

Mondal, S., Baksi, S., Koris, A., and Vatai, G. 2016. Journey of enzymes in entomopathogenic fungi. Pac. Sci. Rev, 18: Article 85e99. https://doi.org/10.1016/j.psra.2016.10.001

Montalva, C., Barta, M., Rojas, E., Gutiérrez, M., and Valenzuela, E. 2014. Neozygites species associated with aphids in Chile: Current status and new reports. Mycotaxon, 129(2): 233-245. https://doi.org/10.5248/129.233

Moorhouse, E. R., Gillespie, A. T., Sellers, E. K., and Charnley, A. K. 1992. Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae a pathogen of the vine weevil, Otiorhynchus sulcatus. Bio Sci Technol, 2(1):49-58. https://doi.org/10.1080/09583159209355217

Moreira, F. G., dos Reis, S., Costa, M. A. F., de Souza, C. G. M., and Peralta, R. M. 2005. Production of hydrolytic enzymes by the plant pathogenic fungus Myrothecium verrucaria in submerged cultures. Braz J Microbiol, 36(1): 7-11. https://doi.org/10.1590/S1517-83822005000100002

Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol, 44: 257-289. https://doi.org/10.1146/annurev.ento.44.1.257

Musser, F. R., Nyrop, J. P., and Shelton, A. M. 2006. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J Econ Entomol, 99: 1538-1549. https://doi.org/10.1093/jee/99.5.1538

Oliveira-Hofman, C., Steffan, S., and Shapiro-Ilan, D. 2023. A sustainable grower-based method for entomopathogenic nematode production. J Insect Sci, 23(5): 4. https://doi.org/10.1093/jisesa/iead025

Ownley, B. H., Gwinn, K. D., and Vega, F. E. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 55: 113- 128. https://doi.org/10.1007/s10526-009-9241-x

Paul, T. A., and Storer, N. P. 2013. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population response to crop rotation, corn rootworm Bt corn, and soil insecticides. PLoS One, 8(11): Article e81537.

Poinar, G., and Poinar, R. 2005. Fossil evidence of insect pathogens. J Invertebr Pathol, 89(3): 243-250. https://doi.org/10.1016/j.jip.2005.05.007

Prince, G., and Chandler, D. 2020. Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to fungal biopesticides in laboratory and field experiments. Insects, 11(1): 55. https://doi.org/10.3390/insects11010055

Reddy, K. R. K., Praveen Kumar, D., and Reddy, K. R. N. 2013. Entomopathogenic fungi: A potential bioinsecticide. Kavaka, 41: 23-32.

Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., and Pell, J. K. 2006. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol, 51: 331-357. https://doi.org/10.1146/annurev.ento.51.110104.150941

Ruiu, L. 2015. Insect pathogenic bacteria in integrated pest management. Insects, 6: 352-367. https://doi.org/10.3390/insects6020352

Ruiu, L. 2018. Microbial Biopesticides in Agroecosystems. Agronomy, 8: Article 235. https://doi.org/10.3390/agronomy8110235

Samson, R. A., Evans, H. C., and Latgé, J. P. 1988. Atlas of entomopathogenic fungi. Springer-Verlag GmbH & Co KG. https://doi.org/10.1007/978-3-662-05890-9

Sarwar, M., and Mukhtar, Z. 2021. Management of insect pests by means of entomopathogenic nematodes. In: L. P. Awasthi (ed), Biopesticides in Organic Farming, 1st Edition, (pp. 225-231) , CRC Press. https://doi.org/10.1201/9781003027690-50

Schoonejans, T., and Van der Staaij, M. 2001. Spinosad, a new tool for insect control in vegetables cultivated in greenhouses. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 662a): 375-386.

Schurkman, J., Dodge, C., Mc Donnell, R., De Ley, I.T., and Dillman, A. R. 2022. Lethality of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) nematodes to the grey field slug Deroceras reticulatum on canna lilies in a Lath house. Agronomy, 12: 20. https://doi.org/10.3390/agronomy12010020

Sevim, A., Sevim, E., and Demirbağ, Z. 2015. General biology of entomopathogenic fungi and their potential to control pest species in Turkey (Entomopatojenik fungusların genel biyolojileri ve Türkiye’de zararlı böceklerin mucadelesinde kullanılma potansiyelleri). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1):115-147. https://doi.org/10.18185/eufbed.33883

Shahid, A. A., Rao, A. Q., Bakhsh, A., and Husnain, T. 2012. Entomopathogenic fungi as biological controllers: New insight into their virulence and pathogenicity. Arch. Biol. Sci. Belgrade, 64(1):21-42. https://doi.org/10.2298/ABS1201021S

Shakeel, Q., Shakeel, M., Raheel, M., Ali, S., Ashraf, W., Iftikhar, Y., and Bajwa, R. T. 2022. Entomopathogenic Nematodes (EPNs): A green strategy for management of insect-pests of crops. In: S. De Mandal et al. (Eds.) New and future development in biopesticide research: Biotechnological exploration (pp. 115-135), Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978- 981-16-3989-0_4

Sharma, R. 2019. Analytical concept of fungicide resistance: A review. Int J Curr Microbiol Appl Sci, 8:1672-1684. https://doi.org/10.20546/ijcmas.2019.812.201

Simmons, D. R., Kepler, R. M., Renner, S. A., and Groden, E. 2015. Phylogeny of Hirsutella species (Ophiocordycipitaceae) from the USA: Remedying the paucity of Hirsutella sequence data. IMA Fungus, 6: 345- 356. https://doi.org/10.5598/imafungus.2015.06.02.06

Singkaravanit, S., Kinoshita, H., Ihara, F., and Nihira, T. 2010. Cloning and functional analysis of the second geranylgeranyl diphosphate synthase gene influencing helvolic acid biosynthesis in Metarhizium anisopliae. Appl Microbial Biotechnol, 87(3): 1077-1088. https://doi.org/10.1007/s00253-010-2556-9

Skinner, M., and Hunter, B. 2001. Synthesis of two strains of the nucleopolyhedrovirus of the gypsy moth from coinfected insect hosts. Appl Environ Microbiol, 67(11): 5285-5293. https://doi.org/10.1128/AEM.67.11.5285-5293.2001

Srinivasan, T. R., and Ganandhi, R. 2020. Efficacy of Bacillus thuringiensis var. galleriae Berliner and selected insecticides on cotton bollworm, Earias vitella. Rwanda Journal of Agricultural Sciences, 2(1): 40-49.

Srivastava, S., Heena, and Chaubey, A. K. 2022. Studies on biological control potential of Steinernema abbasi CS-39 against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae) by adopting the regression probit model. gypt. J. Biol. Pest Control, 32: Article 9. https://doi.org/10.1186/s41938-022-00510-0

Stasiak, K., Rosell, R. C., Blair, C. P., Krueger, S. R., Higgins, J. C., and Longcore, J. E. 2021. Metagenomic evidence of widespread infections by mycoviruses in entomopathogenic fungi. Viruses, 13(7): Article 1361.

Sun, R., Hong, B., Reichelt, M., Luck, K., Mai, D. T., Jiang, X., Gershenzon, J., and Vassão, D. G. 2023. Metabolism of plant-derived toxins from its insect host increases the success of the entomopathogenic fungus Beauveria bassiana. ISME J, 17: 1693-1704. https://doi.org/10.1038/s41396-023-01480-3

Sun, X. 2015. History and current status of development and use of viral insecticides in china. Viruses, 7: 306-319. https://doi.org/10.3390/v7010306

Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Shrestha, B., and Spatafora, J. W. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stu Mycol, 57: 5-59. https://doi.org/10.3114/ sim.2007.57.01

Tang, K. F., and Lightner, D. V. 2007. Infectivity and pathogenicity of a Taura syndrome virus (TSV) isolate from the 2004 Texas outbreak to Specific Pathogen- Free (SPF) Litopenaeus vannamei. Dis Aquat Organ, 742):109-118. https://doi.org/10.3354/dao074077

Taylor, M. W. 2014. Introduction: A short history of virology. In: M. W. Taylor (Ed). Viruses and man: A history of interactions (pp 1–22), Springer, Swizerland. https://doi.org/10.1007/978-3-319-07758-1_1

Townsend, R. J., Ferguson, C. M., Proffitt, J. R., Slay, M. W. A., Swaminathan, J., Day, S., Gerard, E., O’Callaghan, M., Johnson, V. W., and Jackson, T. A. 2004. Establishment of Serratia entomophila after application of a new formulation for grass-grub control. New Zealand Plant Protection, 57: 310-313. https://doi.org/10.30843/nzpp.2004.57.6927

Tumialis D, Skrzecz I, Mazurkiewicz A, Pezowicz E 2019. Sensitivity of caterpillars of the pine tree lappet moth Dendrolimus pini to native isolates of entomopathogenic nematodes. Int. J Pest Manage, 65: 332-337. https://doi.org/10.1080/09670874.2018.1519203

van Regenmortel, M. H. V. 2000. Introduction to the species concept in virus taxonomy. In: M. H. V. van Regenmortel, C. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, et al. (Ed.). Virus taxonomy seventh report of the international committee on taxonomy of viruses (pp. 3-16). Academic Press: San Diego.

Vega, F. E., and Blackwell, M. 2005. Insect-fungal associations: Ecology and evolution. Oxford University Press. https://doi.org/10.1093/oso/9780195166521.001.0001

Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Roy, H. E. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2: 149-159. https://doi.org/10.1016/j.funeco.2009.05.001

Venkatesh, G., Priya, P. S., Anithaa, V., Dinesh, G., Velmurugan, S., Abinaya, S. Thennarasi, A. 2022. Chapter 19 Role of entomopathogenic fungi in biocontrol of insect pests. In: R. Soni, D. Suyal & R. Goel (Ed.), Plant protection: From chemicals to biologicals (pp. 505-548). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110771558-019

Wang, Y., He, J., An, X., Cai, J., Li, S., and Li, L. 2015. Isolation and characterization of a new Entomopathogenic Iridovirus from Oxya chinensis (Orthoptera: Acrididae). J Invertebr Pathol, 125: 53-58.

Wang, Y., Tao, X., and Wang, J. 2009. A novel Entomopathogenic Iridovirus isolated from dead Silkworm larvae. Virol J, 6(1): Article 98.

Wang, Y., Zhang, L., Li, J., Ma, W., Zhu, J., and Lu, G. 2008. Analysis of host immune responses against Musca domestica salivary gland hypertrophy virus in Drosophila. Insect Sci, 15(4): 285-293.

Weng, Q., Zhang, X., Chen, W., and Hu, Q. 2019. Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules. 24(4): Article 664. https://doi.org/10.3390/molecules24040664

Yang, Y., Ye, W., and Hu, C. 2015. Biofilm formation of Bacillus thuringiensis and its involvement in pathogenesis. Biocontrol Sci Technol, 252):127-139.

Yao, Z., Zhang, Y., and Sun, X. 2018. Pathogenicity and transmission of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in the green peach aphid Myzus persicae. PLoS One, 13(1): Article e0190459.

Zimmermann, G. 2008. Review on safety of the entomopathogenic virus Cydia pomonella granulovirus. J Invertebr Pathol, 98(1):69-77.

Zwart, M. P., and Dicke, M. 2007. Pathogen-induced changes in plant odour attract swarming aphids. Oecologia, 154(4): 701-709.