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Abstract
Thyroid hormones (TH) have a multitude of actions, mainly on development and differentiation during early life and play 
many vital roles in almost all tissues including neuronal tissues. TH rapidly alters the mitochondrial functions both by its 
genomic and direct actions on mitochondrial binding sites. The functional relationship between TH and mitochondrial 
ion transport during stress response has not yet been elucidated in mammals so far. Here, we report a rapid in vivo action 
of triiodothyronine (T3) on mitochondrial ion transporter functions in the neuronal clusters of cortex, hippocampus and 
cerebellum of Swiss Albino mouse (Mus musculus) treated short-term with triiodothyronine (T3; 200ng g-1) for 30 min 
either in non-stressed or in restraint-stressed (30 min each day for 7 days). The mH+-ATPase activity in the cortex decreased 
to significant levels after T3 treatment in both non-stressed and restraint-stressed mice. On the contrary, the mH+-ATPase 
activity in the hippocampus and cerebellum increased to significant levels after T3 treatment in both non-stressed and 
restraint-stressed mice. The mCa2+-ATPase activity in the cortex and cerebellum decreased to significant levels after T3 
treatment in both non-stressed and restraint-stressed mice. The mCa2+-ATPase activity in the hippocampus that increased 
to significant levels after T3 treatment, showed a reversal after restraint-stress in T3-treated mice. The mitochondrial 
Mg2+-ATPase activity in the cortex decreased to significant levels after T3 treatment in restraint-stressed mice. On the 
contrary, T3 treatment in restraint stressed mice increased to significant levels the mitochondrial Mg2+-ATPase activity in 
the cerebellum. The mitochondrial Mg2+-ATPase activity in the hippocampus, which increased to significant levels after T3 
treatment in non-stressed mice, reversed its activity in T3-treated restraint-stressed mice. Spatial and differential action of 
T3 on the mitochondrial ion transporters has been found in the present study that corroborates with a rapid modulatory 
action of T3 on the transport of H+, Ca2+ and Mg2+ in the brain mitochondria of mice which appears to be sensitive to 
restraint stress. 
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1. Introduction
Thyroid hormones (THs) are essential regulators of 
growth, development and normal body functions, and 
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their release is coordinated by the hypothalamic-pituitary-
thyroid (HPT) axis. The regulation of HPT axis has been 
shown as an acutely stress-responsive neuroendocrine 
system1. Thyroid hormones are known for their activity to 
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maintain cellular basal metabolic rate and are considered 
as major regulators of energy metabolism, mitochondrial 
activity, oxygen consumption and active oxygen 
metabolism2. The combination of circulating levels of T4, 
expression of deiodinases and thyroid hormone receptors 
(TRs) governs spatial and temporal TH signaling in 
brain3. Thyroid hormones possess both central effects 
that consist of a direct signaling on the central nervous 
system, and peripheral effects that correspond to 
direct effects in responsive tissues4. Triiodothyronine 
(T3) controls energy expenditure via both central and 
peripheral pathways and acts predominantly through the 
nuclear receptors, and TH receptors alpha (THRA) and 
beta (THRB)5. Additional factors that impact TH action 
in the brain include metabolism, activation of thyroxine 
(T4) to T3 by the enzyme 5’-deiodinase Type 2 (Dio2), 
inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to 
reverse T3 (rT3), which occurs in glial cells, and uptake by 
the monocarboxylate transporter 8 (Mct8) in neurons6. 
The transductional regulation of ion transport activity 
is a prominent mechanism by which hormone signals 
influence the neuronal communication and circuit 
function of the mammalian central nervous system7. 
Hormone-induced changes in the activity of these 
electrogenic proteins permit a rapid regulation of intrinsic 
neuronal excitability and the resultant reconfiguration of 
circuit outputs8.

Stress as a disruption in the normal homeostatic 
function causes dysfunction of physiological processes9. 
Induction of physiological stress such as restraint 
stress imposes threat to physiological processes10 - 12. 
The stress response invites a series of physiological 
and behavioral modification that demands activation 
of hypothalamo-pituitary-adrenal (HPA) axis and the 
brain sympathetic-chromaffin (BSC) axis that helps the 
organism to cope with these challenges13 - 14. As a stress 
model, physical restraint stress causes stress-associated 
changes in the physiological, immunological, and 
neurobiological status of mammals15. Moreover, a number 
of studies have reported that immobilization or restraint 
stress is accompanied by disturbance in antioxidative 
capacity of the organism16 and ion transport functions12.

A number of factors including individual sensitivity 
and the type of stressor have been shown to influence 
the brain functions17. Restraint stress, a modified form of 
immobilization stress, is a validated experimental stressor 
that can induce both physical and psychological effects 
at the same time18. Frontal cortex and hippocampus 

are brain regions sensitive to stress-induced damage19. 
Stress stimulates hypothalamus to release corticotropin-
releasing hormone (CRH) into the portal vein. CRH 
induces anterior pituitary to release adrenocorticotrophic 
hormone (ACTH), which in turn affects the adrenal cortex 
and increases synthesis and release of corticosteroids20. 
Corticosteroids include glucocorticoids, which regulate 
glucose metabolism, and mineralocorticoids, which 
regulate water balance and blood pressure. In humans, the 
major glucocorticoid is cortisol and in rodents including 
mice it is corticosterone. Corticosterone delivered into 
the blood causes diverse stress responses in tissues, and 
modulates the functions of hypothalamus and pituitary 
for negative feedback on CRH and ACTH secretion20 - 21. 
A rise in corticosterone has been found in mice kept 
for restraint-stress (Peter et al., unpublished). One of 
the most vulnerable targets of stress is hippocampus, 
because it abundantly expresses both glucocorticoid 
and mineralocorticoid receptors22. Stress that changes 
hippocampal neural activity and synaptic plasticity 
activates hippocampal glucocorticoid receptor (GR) and 
decreases neuronal cell survival and neurogenesis23.

Mitochondria, because of their known physiological 
function, are the target of most studies on the calorigenic 
effects of TH. Mitochondria, in fact, provide about the 
90% of the cellular energy supply, and they are also the 
headquarters for a multitude of biochemical pathways 
related to metabolism24. Indeed, besides ATP synthesis, 
mitochondria are the site of other important biochemical 
events such as oxidation of fatty acids, production 
of free radical, heme synthesis, the metabolism of 
some amino acids, iron metabolism, and calcium 
homeostasis20. In addition, mitochondria contribute to 
many processes central to both cellular function and 
dysfunction, including calcium signaling, cell growth 
and differentiation, cell-cycle control, and cell death25. 
Mitochondria utilize metabolic substrates to generate 
ATP via ATPase complex, which is coupled to oxygen 
consumption via the proton electrochemical gradient 
existing across the inner mitochondrial membrane26. 

ATPases are membrane pumps widely used as 
indicators of osmoregulatory indices in many animals 
including mammals27 - 28, 12. Mitochondrial Ca2+ 
accumulation has a role in satisfying energy demands 
by increasing the ATP production through activation of 
mitochondrial enzymes, and modulation of the dynamics 
of calcium signals in cell functions29. Intracellular Ca2+ 
is a fundamental biochemical messenger that controls 
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± 10% relative humidity  with minimum noise levels 
and limited handling. Animals were allowed ad libitum 
access to standard pellet feed (Sri Sai Durga Feeds and 
Products, Bangalore, India) as maintenance diet and 
purified tap water. Cage bedding was changed once every 
two days. The experiment was carried out under the same 
environmental conditions as those in the animal house, 
with the animals being brought to the experimental room 
in their home cages. The experiments were approved by 
the Institutional Animal Ethics Committee (IAEC) of the 
university IAEC-KU-31/2011-12-ZOO-MCSP (2). 

2.2 Experimental Protocol

2.2.1 Dose-Dependent Effect of T3 in mice
The dose-responsive in vivo actions of T3 on mitochondrial 
ion transporter activities were studied in the cortex, 
hippocampus and cerebellum of mice to understand the 
short-term actions of T3. Mice were kept as four groups 
of four each. The first group received intraperitoneal 
injection (ip) of 0.9% NaCl in 100 µL as vehicle, and 
served as sham control. The remaining three groups 
of mice were administered intraperitoneal injection of 
varied doses (200, 400, 600 ng g-1) of T3, and the duration 
of treatment was 30 min.

2.2.2 Action of T3 in Restraint-Stressed Mice
A selected dose of T3 (200 ng g-1) was employed in another 
set of experiment that tested the impact of restraint stress 
on brain ion transport functions in T3-treated mice. For 
that purpose, two subsets of mice groups comprising 4 in 
each group were held as non-stressed mice and restraint-
stressed mice, respectively. The first group in non-stressed 
subset that served as sham controls received saline (0.9% 
NaCl) as vehicle. Mice in the second group were given ip 
injection of a selected dose of T3 (200 ng g−1). Each group 
of mice in the stressed subset comprised 2 groups that 
were previously exposed to the psychosocial stress in the 
form of intermittent restraint stress of 30 min each day for 
seven days as reported earlier. They were then given saline 
injection (control) and T3, respectively, for 30 min.

2.3 Sampling and Analysis
The mice were anaesthetized with Nembutal (Sisco 
Research Laboratories, Mumbai, India) and they were 
swabbed with 70% alcohol to wet the fur. The abdominal 
skin was removed. A midline abdominal incision was 

numerous processes in neurons including transmitter/
peptide release, ion channel activity, gene expression, 
and aerobic metabolism30. A property of Ca2+-induced 
Ca2+- release by the mitochondria exists in a variety of 
vertebrate and invertebrate neuronal types31. This process 
is initiated when Ca2+ derived from voltage-gated Ca2+ 
channels diffuses into the mitochondria through the 
inner mitochondrial Ca2+ uniporter32. Subsequently, Ca2+ 
is slowly released from the mitochondria into the cytosol 
by a Na+/Ca2+ and/or H+/Ca2+ exchanger33. 

Studies on ADP (Mg2+)-dependent de-activation 
and ATP (Mg2+)-dependent activation of mitochondrial 
ATPase revealed that the slow active/inactive transition is 
primarily controlled by the ATP/ADP ratio34 - 35. Likewise, 
the function of mitochondrial H+-ATPase is mainly to 
synthesize ATP and transport H+. The ATP is synthesized 
from ADP and Pi by H+ ATPase using the energy released 
by H+ flowing back to mitochondrial matrix. It couples 
ATP synthesis at three locations on the mitochondrial 
respiratory chain. At each location, one ATP molecule 
can be synthesized by every two electrons. Mitochondria 
transport Ca2+ via Ca2+-ATPase while the final synthesis 
of ATP must be involved in the H+-ATP, which suggests 
that inhibition of ATP synthesis may be associated with 
changes in mitochondrial Ca2+-ATPase and H+-ATPase 
activities36.

The functional relationship between TH and brain 
mitochondrial ion transporter activity and its probable 
role during restraint stress has not been elucidated 
in mammals. The present study, therefore, examined 
the dose-dependent response of short-term in vivo T3 
treatment (30 min) on the mitochondrial H+, Ca2+ and 
Mg2+ transporter activities in the cortex, hippocampus 
and cerebellum of mice kept either in non-stressed or 
restraint-stress condition.

2. Materials and Methods

2.1 Animal Holding Conditions
Twelve weeks-old healthy adult female Swiss albino 
mice (Mus musculus) born and reared in the in-house 
animal facility (University of Kerala), were used as the 
test species. Animals were kept in groups of four each in 
polypropylene cages (Size: 29 x 22 x 14 cm) with stainless 
steel–wire mesh top. All animals were maintained under 
a 12 h L:D cycle at 24 ± 4o C room temperature and 70 
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made and abdominal aorta and vena cava were exposed. 
A #23 needle was inserted into the aorta and arterial 
blood was collected with the help of a canula. Then, the 
mice were sacrificed under euthanasia and the brain was 
dissected out and was separated into cortex, hippocampus 
and cerebellum. The isolated tissues were kept in brain-
mitochondrial extraction (BME) buffer containing 0.25 
mM sucrose, 10 mM HEPES, 0.5 mM EDTA, and 0.5 mM 
EGTA ( (pH 7.4) and stored at -80oC for further analysis.

2.3.1 Isolation of brain mitochondria
Mitochondria were isolated from the cortex, hippocampus 
and cerebellum of mice brain as described by Peter et al37. 
Briefly, each segment of brain was kept in ice-cold brain 
mitochondrial extraction (BME) buffer (pH 7.4) containing 
0.25 mM sucrose, 10 mM HEPES, 0.5 mM EDTA, and 0.5 
mM EGTA. The brain tissue was chopped and homogenized 
using glass homogenizer fitted with teflon pestle giving 
8-10 strokes as described previously37. Homogenates were 
centrifuged in Eppendorf 5430R at 2000 x g for 3 min at 4ºC 
to separate the membrane constituents from mitochondria 
and synapses. The supernatant was then centrifuged at 
12,000 x g for 8 min at 40C. The pellets were then washed in 
the isolation buffer with BSA and centrifuged at 12,000 x g 
for 10 min. The pellets were then re-suspended in a 0.25 M 
sucrose solution and centrifuged again for 10 min. These 
final pellets were then suspended in the sucrose medium, 
which served as the enzyme source.

2.3.2  Quantification of Mitochondrial H+, Ca2+ 
and Mg2+-dependent ATPase Transporters

Frozen tissues were thawed and a 10% homogenate was 
prepared in BME buffer (pH 7.4) using a glass homogenizer 
fitted with teflon pestle as described previously27. The 
mitochondrial fraction prepared was used for quantifying 
the activity of ion-transport systems such as bafilomycin-
sensitive H+-dependent ATPase, vanadate-sensitive 
Ca2+-dependent ATPase and oligomycin-sensitive Mg2+-
dependent ATPase. The purity of the mitochondria was 
validated by assaying cytochrome c oxidase and succinate 
dehydrogenase activities which represented intact 
mitochondria. 

2.3.3  Bafilomycin-Sensitive H+- Dependent 
ATPase Transporter Activity 

Bafilomycin-sensitive H+-dependent ATPase transporter 
activity in the mitochondrial fraction of neuronal tissues 

was quantified adopting the method of Peter et al.27 
and modified for microplate assay38. Briefly, sodium 
deoxycholate (0.1 mg protein-1) was routinely added to 
optimize substrate accessibility. Samples in duplicates 
containing (1.0 µg protein) were added to a 96-well 
microplate containing 100 mM NaCl, 30 mM imidazole 
(pH 7.4), 0.1 mM EDTA, 5 mM MgCl2 and 0.14 mM 
ouabain. Bafilomycin A (Sigma-Aldrich) was used as 
the inhibitor. After vortexing, the assay mixture was 
incubated at 37oC for 15 min. The reaction was initiated 
by the addition of 0.3 mM ATP and was terminated with 
addition of 8.6% TCA. The liberated inorganic phosphate 
was measured against phosphate standard at 700 nm in 
Synergy HT Biotek Microplate Reader. 

2.3.4  Vanadate-Sensitive Ca2+- Dependent 
ATPase Transporter Activity 

Vanadate-sensitive Ca2+-dependent ATPase transporter 
activity in neuronal mitochondria was quantified 
adopting the method of Peter et al27 and modified for 
microplate assay37, 38. Samples were prepared as described 
above. Samples in duplicate containing (1.0 µg protein) 
were added to a 96-well microplate containing 60 mM 
imidazole (pH 7.4), 0.2 mM EGTA, and 75 mM KCl. 
0.013 mM CaCl2 was used as the promoter and 0.009 mM 
sodium orthovanadate (Sigma-Aldrich) was used as the 
inhibitor. The change in absorbance between promoter 
and inhibitor assays was calculated, and regression 
analysis was employed to derive the rate of activity of 
mCa2+-ATPase and expressed in μmoles Pi liberated 
per hour for mg protein. The change in absorbance 
between promoter and inhibitor assays was calculated 
and regression analysis was employed to derive the rate 
of activity of mCa2+-ATPase and expressed in μmoles Pi 
liberated per hour for mg protein.

2.3.5  Oligomycin-Sensitive Mg2+-Dependent 
ATPase Transporter Activity

The oligomycin-sensitive Mg2+-dependent ATPase 
transporter activity that corresponded to F0F1 ATPase 
in the neuronal tissue homogenates was quantified 
adopting the method of Peter et al.27 and modified for 
microplate assay38. Samples were prepared as described 
above. Samples in duplicates containing (1.0 µg protein) 
were added to a 96-well microplate containing 60 mM 
imidazole (pH 7.4), 10 mM MgCl2, 0.2 mM EDTA and 
75 mM KCl. Oligomycin (Sigma-Aldrich) was used as 
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the inhibitor. The liberated inorganic phosphate was 
measured against phosphate standard at 700 nm in 
Synergy HT Biotek Microplate Reader. The change in 
absorbance between promoter and inhibitor assays was 
calculated and regression analysis was employed to derive 
the rate of activity of mMg2+-ATPase and expressed in 
μmoles Pi liberated per hour for mg protein.

2.4 Statistical Analysis
Statistical difference among groups was tested by means 
of one-way analysis of variance (ANOVA) followed by 
SNK comparison test. Significance between groups was 
analyzed with the help of Graphpad Software (Graphpad 
Instat-3, San Diego) and the level of significance was 
accepted if P < 0.05.

3. Results

3.1  Short-Term in Vivo Action of T3 on 
Mitochondrial H+-ATPase 

The mitochondrial H+-ATPase activity in the cortex showed 
significant rise (P<0.01) after low (200 ng g-1) and high  
(600 ng g-1) doses of T3 treatment for 30 min (Figure 1A). 
On the contrary, medium (400 ng g-1) dose of T3 treatment 
decreased the mH+-ATPase activity to significant levels in 
the cortex and hippocampus (P<0.01, P<0.05) (Figure 1A).  
The mH+-ATPase activity in the cortex decreased to 
significant levels (P<0.05) after T3 treatment in both non-
stressed and restraint-stressed mice (Figure 1B). On the 
contrary, the mH+-ATPase activity in the hippocampus 
and cerebellum increased to significant levels (P<0.05, 
P<0.001) after T3 treatment in both non-stressed and 
restraint-stressed mice (Figure 1C, 1D). 

Figure 1.  Rapid action of T3 (200, 400 and 600 ng g-1) treatment for 30 min on mitochondrial H+-ATPase (mH+-ATPase) activity 
in cortex, hippocampus and cerebellum of non-stressed mice (A). Action of selected dose of T3 (200 ng g-1) on mH+-
ATPase activity of mice kept at restraint stress for 30 min for consecutive 7 days (B–D). Each point/bar is mean ± SE of 
triplicates drawn for four mice. Significance between non-stressed control mice and T3-treated mice were represented 
as * (P<0.05). Significance of difference between restraint-stressed (RS) mice and T3-treated restraint-stressed mice are 
represented as @ (P<0.05) and @@@ (P<0.001).
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3.2  Short-Term In Vivo Action of T3 on 
Mitochondrial Ca2+-ATPase 

The mitochondrial Ca2+-ATPase activity in the cortex, 
hippocampus and cerebellum remained unaffected after 
treatment of varied doses of T3 (200, 400, 600 ng g-1) for 
30 min in mice (Figure 2A). The mCa2+-ATPase activity 
in the cortex and cerebellum decreased to significant 
levels (P<0.01, P<0.05) after T3 treatment in both non-
stressed and restraint-stressed mice (Figure 2B, 2D). The 
mitochondrial Ca2+-ATPase activity in the hippocampus 
that increased (P <0.001) to significant levels after T3 
treatment, showed a reversal after restraint-stress in 
T3-treated mice (Figure 2C). 

3.3  Short-Term In Vivo Action of T3 on 
Mitochondrial Mg2+-ATPase 

The mitochondrial Mg2+-ATPase activity in hippocampus 
showed significant decrease (P< 0.01) after medium 
(400 ng g-1) and high (600 ng g-1) doses of T3 treatment 
for 30 min (Figure 3A). Low (200 ng g-1) dose of T3 
treatment increased (P<0.001) the mMg2+-TPase activity 
in cerebellum to significant levels, whereas its activity 
decreased to significant levels (P<0.01) after medium  
(400 ng g-1) dose of T3 (Figure 3A). The mMg2+-ATPase 
activity in the cortex remained unaffected after varied 
doses of T3 treatment (Figure 3A). The mitochondrial 
Mg2+-ATPase activity in the cortex decreased to significant 
levels (P<0.01) after T3 treatment in restraint-stress mice 

Figure 2.  Rapid action of T3 (200, 400 and 600 ng g-1) treatment for 30 min on mitochondrial Ca2+-ATPase (mCa2+-ATPase) 
activity in cortex, hippocampus and cerebellum of non-stressed mice (A). Action of a selected dose of T3 (200 ng g-1) 
on mCa2+-ATPase activity of mice kept at restraint stress for 30 min for consecutive 7 days (B–D). Each point/bar is 
mean ± SE of triplicates drawn for four mice. Significance between non-stressed control mice and T3-treated mice 
are represented as * (P<0.05), ** (P<0.01) and *** (P<0.001). Significance of difference between restraint-stressed 
(RS) mice and T3-treated restraint-stressed mice are represented as @ (P<0.05) and @@@ (P<0.001).
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(Figure 3B). On the contrary, T3 treatment in restraint-
stressed mice increased (P<0.05) the mitochondrial Mg2+-
ATPase activity in the cerebellum to significant levels 
(Figure 3D). The mitochondrial Mg2+-ATPase activity in 
the hippocampus increased to significant levels (P<0.001) 
after T3 treatment in non-stressed mice but showed a 
decrease (P<0.001) after T3 treatment in restraint stressed 
mice (Figure 3C). 

4. Discussion
Thyroid hormones are critical for the regulation of 
development of CNS.  As the active form of TH, T3 is 
crucial for the neuronal development, differentiation of 
astrocytes and oligodendrocytes, and also for microglial 
development39. The non-genomic or genomic molecular 
mechanisms of TH support the functions of ion pumps 

Figure 3.  Rapid action of T3 (200, 400 and 600 ng g-1) treatment for 30min on mitochondrial Mg2+-ATPase (mMg2+-
ATPase) activity in cortex, hippocampus and cerebellum of non-stressed mice (A). Action of a selected dose of  
T3 (200 ng g-1) on mMg2+-ATPase activity of mice kept at restraint stress for 30 min for consecutive 7 days (B–D). 
Each point/bar is mean ± SE of triplicates drawn for four mice. Significance between non-stressed control mice and 
T3-treated mice are represented as *** (P<0.001). Significance of difference between restraint-stressed (RS) mice 
and T3-treated restraint-stressed mice are represented as @ (P<0.05), @@ (P<0.01) and @@@ (P<0.001).
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and channels that are important to normal excitable cell 
function. 

Transport of H+ is an integral function of the 
mitochondrial ADP/ATP carrier (AAC), a major transport 
protein of the inner mitochondrial membrane40. Moreover, 
it exchanges mitochondrial ATP for cytosolic ADP and 
controls cellular production of ATP. The H+ leak and 
mitochondrial uncoupling could be dynamically controlled 
by cellular ATP demand and the rate of ADP/ATP 
exchange41. Short-term T3 can increase the mitochondrial 
H+-ATPase activity in the hippocampus and cerebellum of 
both non-stressed and restraint-stressed mice, implying 
the role of T3 in mitochondrial H+ transport. THs are 
known for rapid action on ionotropic glutamatergic 
receptors in hippocampal neurons that could modulate 
brain function in physiological and pathological states42 - 43. 
T3 has been shown to stimulate Na+/H+ exchanger activity 
in excitable cells and to enhance recovery of intracellular 
pH after an acid load44. The mechanism of increased 
exchanger activity includes TH-dependent activation of 
mitogen-activated protein kinase (MAPK)45. It is likely 
that during stress, accumulation of H+ ions as a result of 
acidosis could enhance the Na+/H+ exchanger as well as the 
mitochondrial H+-transport system. On the contrary, the 
lowered mitochondrial H+-ATPase activity in the cortex 
after T3 treatment in both non-stressed and restraint-
stressed mice might account for a modulatory action of 
neuronal clusters involving serotonergic, dopaminergic, 
cholinergic and GABAergic neurons as studies have shown 
that TH specifically modulates the function of GABAergic 
neurons in both in vivo and in vitro in rats46 - 47. A reciprocal 
regulation of the thyroid and GABA systems exists in 
vertebrates48. 

In the present study, the mitochondrial Ca2+-ATPase 
activity in cortex and cerebellum decreased after T3 
treatment in both non-stressed and restraint-stressed 
mice. This indicates that despite the stressed state T3 can 
lower Ca2+-dependent transport activity. On the contrary, 
in hippocampus, mitochondrial Ca2+-ATPase activity 
that showed a rise after T3 in non-stressed mice decreased 
in restraint mice, point to sensitivity of Ca2+ transport 
to T3. Hippocampal neurons mainly release glutamate 
or gamma-aminobutyric acid49. Glutamate is the major 
excitatory neurotransmitter in the nervous system. As an 
amino acid and neurotransmitter, glutamate has a large 
array of normal physiological functions. GABA is the chief 
inhibitory neurotransmitter in the brain, and the major 
difference between glutamate and GABA is that the latter 

is synthesized from the former by the enzyme L-glutamic 
acid decarboxylase50. This elevated mitochondrial Ca2+ 
transport in hippocampus after T3 treatment in non-
stressed mice might be due to the excitatory action of 
glutamergic neurons. On the contrary, T3 might have 
excited the GABAergic neurons during restraint stress 
that in turn lowered the mitochondrial Ca2+-ATPase 
activity. Spontaneous Ca2+ discharges from presynaptic 
stores could trigger spontaneous synaptic release of 
glutamate in hippocampal area51. Studies in individual 
axonal varicosities of hippocampal mossy fibers showed 
that activation of GABAA receptors reduces presynaptic 
Ca2+ entry and elevates the Ca2+ background level52. Many 
studies have shown that T3 or, in some cases, T4 stimulates 
these ion pumps including Na+/H+ exchanger44, Na+/
K+-ATPase53, Ca2+-ATPases54 and channels such as inward 
rectifier K+ channel55 and the Na+ current56 - 57.

Moreover, T3 might have stimulated the serotonergic, 
dopaminergic, cholinergic and GABAergic neurons 
that constitute the cortex. It is likely that the excitatory 
action of these neurons might have lowered the mCa2+-
ATPase activity after T3 treatment in both non-stressed 
and restraint-stressed mice brain. Likewise, the 
neuromodulatory role of glutamergic and GABAergic 
neurons in the cerebellum might lower the mitochondrial 
Ca2+-ATPase activity observed after T3 treatment in both 
non-stressed and restraint-stressed mice.  Studies in C. 
elegans showed that neuromodulators, such as serotonin, 
can change Ca2+ signals and depolarization amplitudes 
in opposite directions, simultaneously, within a single 
neuron, thus altering neuronal excitability and synaptic 
strengths58. Dopamine release can be triggered in very 
low extracellular Ca2+ concentrations59 - 60. Studies have 
shown that TH increases the Ca2+-ATPase activity of 
the sarcoplasmic reticulum in skeletal muscle, thereby 
increasing the energy-turnover associated with Ca2+-
cycling during contraction and rest61. Ca2+-ATPase in 
plasma membranes from a variety of tissues has been 
shown stimulated by the non-genomic calmodulin-
dependent action of TH that directly acts on cell 
membrane and independent of the cell nucleus54. In non-
excitable and excitable tissues, ambient TH may set basal 
activity of Ca2+-ATPase or magnitude of the enzymatic 
response to calmodulin Ca2+54. Moreover, under 
physiological conditions, ionotropic glutamate receptors 
mediate the processes of excitatory neurotransmission 
and synaptic plasticity. During stressed conditions, 
sustained pathological release of glutamate from neurons 
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and glial cells causes prolonged activation of these 
receptors, resulting in massive depolarization and Ca2+ 
overload. High levels of Ca2+ activate many degradative 
processes depending on the metabolic status, causing 
neural cell death62. Mendes-de-Aguiar et al.63 reported 
that T3 would eliminate the “gliotoxic” effect of glutamate 
on cultured cerebellar astrocytes from newborn rats by 
its genomic action including GLT1 and GLAST proteins. 
Likewise, T3 can protect rat hippocampal neurons against 
glutamate toxicity by a non-genomic mechanism43 and T3 
even exerts its regulation of glutamergic neurons by both 
genomic and non-genomic mechanisms64.

Cerebral cortex is the most important part of the 
central nervous system associated with motor function 
and intellectual performances. It is highly enriched 
with cholinergic neurons along with inputs from 
the noradrenergic and dopaminergic systems. In the 
present study, short-term T3 treatment could decrease 
Mg2+-ATPase activity in the cortex and hippocampus 
of restraint-stressed mice and increase the activity in 
the cerebellum. It appears that a spatial regulation of 
cholinergic neurons by lowering Ca2+ mobilization could 
account for this action of T3 during restraint-stress. 
Moreover, the highest numbers of TH receptors have been 
traced in the cerebral cortex65. Studies in mammalian brain 
have shown that T3 stimulates acetylcholine metabolism 
by increasing AChE activity as well as uptake of the 
released ACh through an increase in synaptosomal Mg2+-
ATPase activity. A positive impact of T3 on the cholinergic 
system in mammalian brain is thus known66. TH has 
been shown to possess a vital role in brain neuronal Ca2+-
mobilization by stimulating Ca2+/Mg2+-ATPase activity in 
nerve terminals as a T3-induced stimulation of Ca2+/Mg2+-
ATPase activity in relation to Ca2+ mobilization is known 
in nerve terminals67. The mitochondrial ATP synthase 
is composed of two separable components: F1 (factor 1) 
and Fo (factor that confers sensitivity to oligomycin). The 
ATP synthase is a reversible molecular motor comprised 
of two parts: a proton turbine (within Fo) and a molecular 
machine (F1) that uses rotational energy to form ATP 
from ADP and phosphate. The proton turbine is powered 
by the flow of protons down a potential gradient across 
the mitochondrial membrane created by the electron 
transport chain during respiration. The rotor of the 
turbine is within the F1 and when it rotates, drives the 
synthesis of ATP26. An intriguing feature of the Fo-F1 
complex is a slow active/inactive transition of their 
ATPase activity, which is under a complex control of 

adenine nucleotides, Pi and Mg2+34. It is evident that ADP 
bound at some high-affinity nucleotide-specific site of Fl 
is a prerequisite for the Mg2+-induced de-activation and 
anion induced activation of ATPase34.

 It appears that besides having both non-genomic 
and genomic actions, TH could repair certain neuronal 
dysfunctions during stress, particularly by modifying 
the intracellular H+ accumulation by stimulating Na+/
H+ exchanger, lowering Ca2+ by activating Ca2+-ATPase 
and Mg2+-ATPase activity through the differential and 
spatial regulation of neuronal clusters distributed in the 
varied neuronal regions. Overall, a neuroprotective and 
an integrative role of T3 in modulating the neuronal ion 
transport could be seen during restraint stress in mice 
brain. 
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