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Abstract
Breast, ovarian, endometrial, prostate and cervical cancers are considered as the major endocrine-dependent malignancies 
associated with human reproductive system. Current tools used for diagnosis and therapeutics of these malignancies 
mainly exploit the hormone-sensitivity associated with them. Nonetheless, they often fail to give appreciable outcomes 
in terms of prognosis and survival rates. miRNAs have emerged as one of the key players dictating the pathophysiology 
of endocrine-dependent malignancies and present themselves as apt candidates to be developed as potential biomarkers 
or therapeutic targets for the early prognosis as well as treatment of these diseases. In this review, we have high-lighted 
the regulatory networks controlled by the promising candidate miRNAs in the pathophysiology of the major endocrine-
dependent reproductive system-associated malignancies.
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1.  Introduction
miRNAs are ~22 nucleotides long, small non-coding 
RNA molecules that regulate the expression of specific 
target genes at post-transcriptional levels. miRNAs play 
key regulatory roles in a variety of biological processes 
like cell proliferation, differentiation, apoptosis, etc.1. 
The genes that encode miRNAs harbor ~3% of human 
genome, which in turn may regulate one-third of human 
protein coding genes2. The miRNAs have been implicated 
in the regulation of reproductive physiology, where they 
engage in regulation at different stages, such as at sex 
differentiation, gametogenesis, fertilization, implantation 
etc.3-6. Therefore, any discrepancy associated with the 
expression pattern of miRNAs can cause adverse impact 
on the proteome, which in turn can lead to a variety of 
pathological effects. miRNAs have also been reported 
to be involved in the pathophysiology of human 
reproductive system. The malignancies associated with 
reproductive system are mostly fuelled by hormones and 
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such malignancies include ovarian cancer, endometrial 
cancer, prostate cancer, breast cancer, etc.7-10. The present 
review is focused on highlighting the involvement of 
miRNAs in the regulation of candidate, hormone-fuelled 
malignancies associated with human reproductive 
system, with a view to provide a holistic platform of 
information pertaining tosuch miRNAs which would 
serve as potential biomarkers or therapeutic targets for 
the prognosis and treatment of reproductive system-
associated malignancies. 

2. � miRNAs: Biogenesis, Molecular 
Structure and Function

miRNAs include a class of small, single-stranded, non-
coding RNAs encompassing ~22 nucleotides in their 
mature form. miRNAs are encoded by endogenous genes 
which may get transcribed as independent units either 
from intronic sequences of protein coding or non- coding 
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regions or from intergenic sequences.  Some miRNA 
genes are transcribed as polycistronic primary transcripts, 
and the genes that code for such miRNAs are located in 
clusters11,12.

The miRNA genes are transcribed by RNA polymerase 
II/III. The primary transcript thus formed is then processed 
in the nucleus by a microprocessor complex to yield a hair 
pin like, 60-90 bp long precursor miRNA (pre-miRNA)13. 
The microprocessor is composed of a nuclear ribonuclease 
III, Drosha and its partner DGCR8, which is a double-
stranded RNA binding protein14,15. Pre- miRNA is actively 
transported out of the nucleus by Exportin-5 machinery16 
and within the cytoplasm it is cleaved by an RNase III 
enzyme namely Dicer assisted with TAR (HIV) RNA 
Binding Protein (TRBP)17, yielding ~22 nucleotide long 
miRNA:miRNA duplex characterised by an overhanging 
of 2 nucleotides at the 3’end18. A strand with relatively 
unstable base pairing at the 5’ end is then incorporated 
into RNA-Induced Silencing Complex (RISC) in a 
mechanism dependent on Dicer, TRBP, dsRNA binding 
proteins of the AGO family, nucleases, helicases, etc.19,20. 
The mature miRNA possesses a 2-8 nucleotide long seed 
sequence at the 5’ end21. The miRNA-mediated regulation 
on target gene expression is orchestrated mainly through 
the limited base pairing interactions between seed region 
of miRNA and the complimentary sequence available at 
the 3’UTR of target mRNA. The imperfect base pairing 
can result in the destabilization of target mRNA by 
means of deadenylation, decapping, etc.22. miRNA-
target interaction may also lead to mRNA sequestration, 
degradation or storing in processing bodies (p-bodies)23. 
According to a few reports, miRNAs might also interact 
with the 5’ UTR, coding and promoter region of the 
target gene1. A single miRNA can target multiple mRNAs 
through limited base pairing interactions, indicating the 
enormous regulatory potential of individual miRNAs.

3.  �Influence of miRNAs on 
Endocrine-Dependent 
Malignancies of Human 
Reproductive System

3.1	 Endocrine-Dependent Malignancies
The endocrine-dependent malignancies constitute one of 
the most common types of cancers world-wide7. Among 

such carcinomas, breast cancer and cervical constitute 
the first and fourth most common cancers, respectively, 
among women8. Ovarian hormones such as estrogen 
and progesterone have been reported to play key role in 
the development of breast cancer. In addition, pituitary 
hormones such as prolactin and growth hormone have 
also been implicated in breast cancer development24. 

Estradiol (E2) and progesterone (P4) have been implicated 
in promoting carcinogenesis of cervical tissue25. Prostate 
cancer is the second most common cancer among men 
globally9. The male sex hormone, androgens, has been 
implicated to play key role in the progression of prostate 
cancer26. Further, ovarian cancer and endometrial cancer 
have also been reported to be fuelled by hormones. The 
ratio of estrogen to progesterone has been shown to play a 
crucial role in endometrial carcinogenesis10. Gonadotrop 
in releasing hormone and its synthetic analogues have 
been reported to exert anti-proliferative effect on ovarian 
cancer cell lines27. In addition, the constitutive expression 
of progesterone receptors has been implicated in the 
development of ovarian neoplasm28. The regulatory role of 
candidate miRNAs in the pathogenesis of major hormone-
dependent malignancies of human reproductive system is 
discussed hereunder.

 3.2  miRNAs in Breast Cancer
Breast Cancer (BC) is said to be the most prevalent 
malignancy and the leading cause of cancer-related deaths 
among women world-wide8. Approximately, 70% of all 
malignancies associated with breast tissue belong to the 
hormone receptor-positive category. Endocrine therapy, 
practiced in such types of breast cancers, though effective 
in half of the population, developed complications 
associated with endocrine resistance in the remaining 
other half29.  miRNAs have been implicated to play key 
role in the pathophysiology of BC and many of these 
have been identified to be potent therapeutic targets. The 
recent reports in this regard are discussed.

Ye and his team have reported that the migration and 
invasion of breast cancer cells were monitored by miR-429 
via regulating the expression of its target genes, including 
ZEB1 and CRK30. Further, an oncogenic miRNA, miR-9, 
has been implicated to play key role in the regulation of BC 
cell metastasis. miR-9-mediated effect on metastasis was 
found to be orchestrated via its target genes, E-cadherin 
and FOXO132-35. Similarly, miR-223 has been reported 
to promote BC cell proliferation by targeting FOXO131. 
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miR-940 has been implicated inFOXO3-dependent 
induction of cell proliferation and invasion in BC46. 
According to a report by Zhao and his group, miR-145 
is involved in the regulation of cell migration and EMT 
by targeting FSCN-1 gene in BC37. However, miR-421 has 
been reported to inhibit BC cell metastasis by targeting 
metastasis-associated 1 gene (MTA1)44. A report by Fong 
et al., have shed light on the role of a secretory miRNA in 
modulating the glucose metabolism in the neighbouring 
cells. The authors suggested that secretory miR-122 in BC 
plays key role to increase the nutrient availability in the 
premetastatic niche, by modulating the expression levels 
of pyruvate kinase in the recipient non-cancerous cells36 

(Figure 1).
Further, the expression of miR-183/-96/-182 cluster 

was found to be upregulated in BC and it was found to be 
involved in facilitating cell proliferation and migration. 
Interestingly, miR-182 of the cluster was found to 
regulate the expression of RAB21 gene38. A report by Wu 
et al., suggests that miR-30b-5p acts to switch on AKT 

signalling in BC cell line by regulating the expression level 
of ASPP2 gene, and such a regulation has been reported 
to cause cell proliferation, migration and invasion39. 
Further, a recent gene knock out study by Hannafon and 
his group has revealed the oncogenicity of two candidate 
miRNAs including miR-23b and miR-27b, in MCF7 cell 
line40. Further, miR-142-3p, by targeting HMGB1, has 
been reported to promote drug sensitivity and apoptosis 
of BC cells and, hence, the miR-142-3p/HMGB1 axis was 
suggested to be a potent therapeutic target to manage 
drug resistance of BC patients41. In addition, miR-205-3p 
and miR-18 have been reported to be associated with 
poor prognosis of BC patients, where miR-18 has been 
reported to exert its effect by initiating wnt signalling 
pathway42,43.

A report by Sharma et al., has revealed that miR-
191-5p inhibits apoptosis in BC cell lines by directly 
targeting SOX4 gene and, further, p53 has been identified 
to be a negative regulator of miR-191-5p expression45. 
Similarly, miR-21 has been reported to promote cell 

Figure 1.  Micro-RNAs in breast cancer: miR-429, miR-21 and miR-9 are involved in the regulation of epithelial to mesenchymal 
transition in breast cancer cells by targeting Zinc finger E-box binding homeobox 1, Leucine zipper transcription factor like 1 
and E-cadherin, respectively. miR-223 and miR-9 are involved in the regulation of cell proliferation by targeting Forkhead box 
protein O1, while, miR-940 regulates cell proliferation by targeting Forkhead box protein O3a. miR-30b-5p-mediated inhibition 
of ‘Apoptosis-stimulating of p53 protein 2’ was found to be associated with the activation of AKT signaling, leading to cell 
proliferation. miR-1307-3p has been implicated to regulate cell proliferation by targeting SET and MYND domain containing 
4. miR-122, miR-124, miR-421 and miR-429 regulated breast cancer cell metastasis by targeting Pyruvate kinase, Interleukin 
11, Metastasis associated 1 and CRK Like Proto-Oncogene, Adaptor protein respectively. miR-145 regulates cell migration by 
targeting Fascin Actin-Bundling Protein 1, whereas, miR-142-3p and miR-191-5p modulate acquisition of drug resistance by 
targeting high mobility group box 1 and SRY-box transcription factor 4, respectively.
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proliferation and metastasis in BC cells and it appears to 
target LZTFL1 gene, whose protein counterpart has been 
reported to regulate β-catenin signalling, promoting the 
process of EMT47. In addition, Yan et al., have reported 
that knockdown of miR-21 in BC cell line prevents cell 
proliferation, migration and tumorigenesis48. Further, 
miR-124 has been reported to prevent metastasis of BC 
cells by targeting interleukin -1149. In addition, Han et 
al., have reported that miR-1307-3p targets SMYD4, a 
tumor suppressor gene, and thereby promote BC cell 
proliferation and tumorigenesis50.

3.3  miRNAs in Ovarian Cancer
Ovarian Cancer (OC) is the 6th most common malignancy 
in women. OC is characterised by the malignant 
transformation of ovarian epithelial cells, stromal cells, 
germ cells or cells of sex cords, wherein epithelial cells are 
the most frequent committed ones51. The OC cells exhibit 
four different histological sub-types, serous, endometroid, 
mucinous and clear cells. Serous cell is the most common 
among them. Each histological sub-type exhibits distinct 
morphology and genetic alterations52. The prognosis 
of OC is relatively tedious due to the subtle progressive 
nature of the disease in the early stage and the acquisition 
of drug resistance by the OC cells, hence it demands novel 
therapeutic interventions for the early stage prognosis 
and treatment. Numerous tumor suppressor/oncogenic 
miRNAs have been reported to be associated with OC 
tumorigenesis, and such recent reports are reviewed here.

miR-424-5p, which has been reported to be 
significantly down-regulated in Epithelial Ovarian 
Cancer (EOC) tissue and cell lines, upon being restored 
of its function, targets CCNE1 the gene coding for 
G1/S-specific cyclin-E1 protein, and leads to inhibition 
of E2F1-pRb pathway and associated cell cycle arrest at 
G1/G0 phase53. Evasion of immune system is one of the 
important hallmarks of carcinogenesis. Programmed 
cell death-1 (PD-1) and T-lymphocyte-associated 
antigen-4 (CTLA-4) were reported to be the major 
immunomodulatory receptors on T cells, which interact 
with PD-L1 on macrophages and CD80 on dendritic 
cells, respectively. It has been reported that in EOC, 
miR-424(322) targets PD-L1 and CD80, which in turn 
contribute to acquisition of chemoresistance54. Further, 
miR-424-3p has been reported to sensitize OC cells to 
cisplatin by targeting galectin-3 gene55.

miR-145 was found to be down-regulated in OC 
tissues, cell lines and also in serum samples of OC 
patients. P70S6K1 was found to be one of the direct 
targets of miR-145, which, in an AKT/mTOR/P70S6K1 
axis-dependent manner, promoted the expression of 
G1 cyclins and regulated cell cycle progression56,57. In 
addition, MUC1 gene was found to be another target, 
which induces metastasis by promoting the expression 
of matrix metalloproteinase 1358. MUC1-dependent 
transcriptional activation of genes was found to be 
mediated by wnt/β-catenin signalling59. miR-145 was 
found to be down-regulated in response to cisplatin 
treatment in cisplatin-resistant OC cells, and it contributed 
to the immune tolerance of cisplatin-resistant OC cells 
by targeting c-Myc, thereby regulating the expression of 
programmed cell death ligand 1 (PD-L1)60. In addition, 
cyclin D2 (CCND2) and E2F transcription factor 3 
(E2F3), two major regulators of cell cycle progression, 
were found to be the direct targets of miR-145 in OCs, 
and the rescued expression of E2F3 and CCND2, upon 
the down regulation of miR-145 in OCs, promoted 
cell cycle progression61. In a different study, SMAD4, a 
mediator of TGFβ signalling pathway, was found to be a 
direct target of miR-145-5p in EOC cells, and the rescued 
expression of SMAD4, upon down regulation of miR-
145-5p, contributed to cell proliferation and migration62. 
High-Grade serous Ovarian Carcinoma (HGOC) is a 
type of aggressive EOC characterized by loss of function 
mutation in TP53 gene.  miR-145 was found to be down-
regulated in HGOC, where metadherin (MTDH), a 
protein that promotes tumor cell proliferation, was found 
to be its target, and this study established a link between 
p53, miR-145 and MTDH63. 

miR-125b is another miRNA which was found to be 
down-regulated in OC-, and PPARγ-mediated induction 
of miR-125b expression induced growth suppression by 
targeting BCL3, a proto-oncogene64. Ectopic expression 
of miR-125b was found to be negatively regulating the 
process of Epithelial-to-Mesenchymal Transition (EMT) 
by targeting the S100A4 and SET genes65,66. Laminin γ2 
(LAMC2) has been reported to promote OC progression 
by activating p38 MAPK signalling in a miR-125a-5p-
dependant mechanism67. However, miR-125b has been 
reported to be upregulated in cisplatin resistant OC cells 
and its contribution to the acquisition of resistance was 
reported to be by targeting pro-apoptotic BAK1 gene68.

miR-100 has also been reported to be down-regulated 
in OC, where it was found to target Polo-Like Kinase 1 
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(PLK1), a serine/threonine kinase that regulate mitosis at 
different stages69,70. In addition, it has also been reported 
that miR-100 re-sensitizes resistant EOCs to cisplatin by 
negatively regulating the expression of mTOR and PLK171. 
miR-100 along with miR-22 was found to elicit tumor 
suppressor activity by targeting multiple components of 
PI3K/AKT/MTOR signalling pathway72.

Further, miR-377 has been reported to be down-
regulated in OCs and it showed tumor suppressor 
activity when ectopically expressed, by targeting JAG1 
and CUL4A genes73,74. miR-124 has also been reported 
to be down-regulated in OC, where it was reported to 
target SPHingosine Kinase 1 (SphK1) and Programmed 
Cell Death 6 (PDCD6) genes, thereby contributing to 
cell proliferation, migration, invasion and evasion of 
apoptosis75,76. miR-362-3p was found to exhibit anti-
proliferative role in EOC by targeting MyD88 mRNA77. In 
addition, miR-490-3p was found to sensitize OCs towards 
cisplatin by directly targeting ABCC2 gene78. 

Further, let-7d-5p was found to be down-regulated in 
OC and the ectopic expression of this miRNA promoted 
sensitivity of cells to cisplatin and also induced apoptosis 
by regulating HMGA1 gene and the p53 pathway79. 
However, let-7d-3p was found to be upregulated in OC 
cells which was associated with the positive response of 
OC patients to chemotherapy involving carboplatin/
placlitaxel. Further, the in-silico target prediction 
analysis indicated that the predicted targets of let-7d-3p 
were involved in pathways associated acquisition of 
drug resistance, and such targets include HIF-1, ABC 
transporters, RAS and ERbB signalling80.

A study by Kleemann et al., has revealed that 
transfection of OC cells with miR-493-3p mimic induce 
apoptosis by targeting multiple genes including AKT2, 
HMGA2, STK38L, ETS1 and E2F581. In a different study 
by Tambe et al., Mitotic Arrest Deficiency-2 (MAD2), 
an important factor of spindle assembly check point, 
was found to be one of the direct targets of miR-493-3p. 
Further, the elevated level of miR-493-3p was found to be 
associated with the reduced survival rate of OC patients 
with aggressive tumor under paclitaxel therapy82.

Giannakakis and his group reported that one of the 
hypoxia-responsive miRNAs, miR-210, was involved in 
controlling cell cycle progression by negatively regulating 
E2F3 and further that the gene coding for miR-210 was 
often deleted in OC83. According to a study by Jin et al., 
the sensitivity of OC cells towards cisplatin was found 
to be dependent on miR-210-3p mediated regulation 

on E2F384. Further, a study by Ding et al. revealed that 
in SKOV3 ovarian cell line, miR-210, was involved in the 
promotion of OC cell migration via promoting EMT85. Li 
and his group have reported that in response to HIF1α, 
miR-201 was upregulated in OC cell lines, and it was 
found to inhibit apoptosis by targeting PTPN1 gene86, a 
negative regulator of pro-survival- RTK signalling87.

miR-216b has been reported to promote cisplatin 
sensitivity in OC cells by targeting PARP188. Similarly, 
miR-31 has also been reported to contribute to cisplatin 
resistance in OC cells by negatively regulating KCNMA1 
expression, which is a subunit of calcium-regulated big 
potassium channel89. Further, it has been reported that 
down-regulation of miR-31 imparts taxane resistance 
in OC cells by promoting the expression of receptor 
tyrosine kinase MET90. According to Hassan et al., miR-
31 targets Stathmin 1 (STMN1) gene, a depolymerizer of 
microtubule, thereby contributes to taxane resistance in 
OC91,92. 

Wu et al. have reported that miR-22 was down-
regulated in OC cells and further that it promoted EMT 
and cell viability by modulating the levels of NLRP3 
mRNA and, regulating PI3K/AKT pathway93. According 
to a study by Li, et al., the ectopic expression of miR-
22 in OC cell lines promoted apoptosis, suppressed cell 
viability and autophagy by negatively regulating Notch 
signalling pathway94. Similarly, the expression of miR-
106b was found to be significantly low in EOC when 
compared to normal ovarian tissue and benign tumors. 
Further, the ectopic expression of miR-106b was found to 
inhibit tumor progression by targeting RhoC, suggesting 
miR-106b to be a promising therapeutic candidate to be 
used for the treatment of EOC95.

miR-99a was found to act as a tumor suppressor 
miRNA in OC, and its expression was found to be 
significantly low in both OC tissue specimen and cell 
lines. The gain of function studies of miR-99a revealed 
that it suppressed OC cell proliferation and invasion by 
modulating AKT/mTOR signalling pathway and also by 
regulating the process of EMT, in a HOXA1 target gene-
dependent mechanism96.

miR-9 and miR-223 were identified as two major 
biomarkers of recurrent OC97. Further, miR-9 has been 
reported to target E-cadherin in serous OC cells, which 
thereby promoted metastasis. The inhibitory effect of 
miR-9 on E-cadherin, has also been reported to promote 
EMT in OC98. It has also been reported to target BRCA1 
gene in OC and it further prevented DNA damage 
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repair and sensitized OC cells to chemotherapy99. In 
addition, miR-9 has also been reported to target Talin1 
(TLN1) gene in OC100. According to a study by Zhang et 
al., circPLEKHM3, one of the most significantly down-
regulated circular RNA (circ RNA) in OC tissues, was 
found to exhibit tumor suppressor effect by targeting 
miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis101.

miR-137 has been reported to promote cisplatin 
induced apoptosis in OC cells by targeting XIAP102, 
an anti-apoptotic protein that inhibits the activities of 
caspases-3, -7, and -9103. Further, Sun et al., reported that 
in cisplatin-resistant OC cells, the increased ROS level 
caused c-Myc mediated transcriptional repression of 
miR-137, which led to the rescue of its target gene EZH2 
which in turnaccelerated cellular survival pathways. 
Further, c-Myc mediated recruitment of EZH2 to miR-
137 promoter has also been reported to be involved in 
enhancing the repression of miR-137 gene104. Dong et 
al. reported that OC tissue possesses significantly low 
levels of both miR-137 and miR-34a, and these miRNAs 
directly target Snail gene thereby negatively regulating 
the process of EMT, invasiveness and sphere forming 
ability of OC cells105. In OC cells, miR-137 has also 
been reported to target AEG-1/ Metadherin gene106. 
AEG-1, when over-expressed, has been implicated to 
promote tumor cell proliferation, invasion, metastasis 
and chemoresistance107-109. MCL1, one of the major anti 
apoptotic Bcl2, has been reported to be the target of miR-
137 in OC110 (Figure 2).

3.4  miRNAs in Endometrial Cancer
Endometrial Cancer (EC) is said to be the most common 
gynaecological malignancy globally111. It has been 
classified into two different categories based upon its 
responsiveness to estrogen. The type 1 EC, also known as 
the estrogen-dependent endometrioid adenocarcinoma 
is the most common type, characterised by good 
prognosis,while the type 2 is non-estrogen-dependent 
cancer and it has been reported to be highly aggressive112.

miR-494-3p was found to be significantly 
up-regulated in endometrial cancer (EC) and it 
promotes cell proliferation, migration and evasion by 
targeting PTEN and consequently activating PI3K/AKT 
signalling pathway113. Similarly, miR-191 was found to 
be up-regulated in EC tissues and it was found to target 
Ten-Eleven Translocation 1 (TET1). TET1 is a methyl 
cytosine dioxygenase, the decreased expression of which 

results in hyper-methylation of promoter sequence of 
APC, a tumor suppressor gene, with a consequent down-
regulation in the expression of APC114. The expression of 
miR-505 was found to be significantly down-regulated in 
EC tissues and its ectopic expression in EC cells resulted 
in reduced cell proliferation, migration and invasion with 
simultaneous increase in the rate of apoptosis. Further, 
miR-505 was found to target TGFα mRNA and the 
ectopic expression of miR-505 lead to reduced expression 
of TGFα with a subsequent reduction in the levels of 
TGFα responsive proteins like MMP2, MMP9 and CDK2 
and increase in the levels of Bax and cleaved PARP, 
suggesting miR-505 to be a tumor suppressor in EC115. 
Similarly, miR-137 was found to act as a tumor suppressor 
in EC whose expression was found to be supressed by 
DNA hypermethylation116. In addition, the expression of 
FOXO1, a tumor suppressor gene, has been reported to 
be down-regulated in EC. A report by Myatt et al., has 
suggested that several miRNAs like, miR-9, miR-27, miR-
96, miR-153, miR-183 and miR-186 might be responsible 
for the reduced expression of FOXO1 in EC cell lines117. The 
expression of miR-873 was also found to be significantly 
down-regulated in EC tissues and cell lines. A study by 
Wang and Zhu revealed that miR-873, when ectopically 
expressed in EC cells, targets hepatoma-derived growth 
factor (HDGF) and thereby inhibits cell proliferation and 
invasion118. Karaayvaz, et al., have suggested miR-205, 
which was found at significantly high levels in EC tissues, 
to be a unique biomarker in EC119. miR-218, miR-23a and 
miR-34a have been reported to inhibit EC progression by 
targeting ADD2120, SIX1121 and Notch1122, respectively. In 
addition, the over-expression of miR-34b was found to 
inhibit EC cell growth, migration and invasion. Further, 
miR-34b has been reported to induce cell cycle arrest, in 
addition to its capability to induce sensitivity of cells to 
paclitaxel123.

According to a report by Wang et al., increased 
expression of miR-135a in EC contributes to improved cell 
proliferation, migration and invasion. In addition, they 
have suggested that in EC, miR-135a regulates the process 
of EMT by modulating the levels of EMT markers such as 
E-cadherin, Vimentin, N-cadherin and Snail. According 
to them, miR-135a also plays key role in modulating the 
levels of PTEN and p-AKT in EC cells. Further, miR-135a 
has also been reported to contribute to the acquisition of 
cisplatin resistance in EC cells, by negatively regulating 
apoptosis via modulating the expression of BAX and Bcl2 
genes124.
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Figure 2.  �A) Micro RNAs in ovarian cancer: miR-31, let-7d-5p, miR-216b, miR-424-3p and miR-424(322) contribute to 
chemo-resistance of ovarian cancer cells by targeting Potassium-Calcium-Activated Channel Subfamily M Alpha 
1, High Mobility Group AT-Hook 1, Poly (ADP-Ribose) Polymerase 1, Galectin-3 and Programmed death-ligand 
1/ CD80 Molecule, respectively. The process of epithelial to mesenchymal transition has been regulated by miR-
125b, miR-22 and miR-99a by targeting S100 Calcium Binding Protein A4, NLR family, pyrin domain containing 
3 and Homeobox A1, respectively. miR-100, miR-493-3p, miR-424-5p, miR-210 and miR-145 were involved in 
the regulation of cell cycle progression by targeting Polo-Like Kinase 1, Mitotic arrest deficient 2, Cyclin E1, E2F 
Transcription factor 3 and Cyclin D2/ E2F Transcription factor 3 respectively. miR-145 regulates cell proliferation, 
migration and metastasis by targeting different genes such as P70S6K1, Metadherin, Mucin 1 and SMAD Family 
Member 4, B) Micro RNAs in endometrial cancer: miR-9, miR-27, miR-96, miR-153, miR-183 and miR-186 
regulated proliferation of endometrial cancer cells by targeting FOXO1. In addition, miR-494-3p, miR-191, miR-
34a and miR-873 also regulated cell proliferation by targeting Phosphatase and tensin homolog, Tet Methylcytosine 
Dioxygenase 1, NOTCH1and Hepatoma-derived growth factor respectively. miR-34a regulated tumor cell metastasis 
in a NOTCH1 dependent mechanism, whereas, miR-505 regulates metastasis in a Transforming Growth Factor 
Alpha - Matrix metalloproteinase-1/-9 axis. miR-505 indirectly and miR-135a directly target BAX and then regulate 
apoptosis. miR-218 and miR-23a regulate cell invasion by targeting Adducin 2 and SIX Homeobox 1, respectively, 
and C) Micro RNAs in cervical cancer: miR-205 is involved in the regulation of cervical cancer cell migration by 
promoting the expression of Chimerin 1 and by inhibiting Cysteine-rich angiogenic inducer 61 and Connective tissue 
growth factor genes. miR-106a contributes to cell migration by modulating the levels of Matrix Metallopeptidase 
9 in a Sirtuin 1 dependent mechanism. miR-9-5p regulated the process of epithelial to mesenchymal transition by 
targeting Suppressor of cytokine signaling 5 gene. miR-29a-3p contributes to cell proliferation by targeting Smad 
Nuclear Interacting Protein 1 and miR-23a modulated aerobic glycolysis by targeting Lactate dehydrogenase A and 
B genes. miR-432 regulates cell invasion by targeting Fibronectin 1, while miR-381 regulates metastasis by targeting 
G Protein-Coupled Receptor 34 gene. miR-106a & b contribute to cisplatin resistance by targeting Sirtuin 1.
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3.5  miRNAs in Prostate Cancer
With 1.3 million new cases being reported in 2018, 
prostate cancer is the second most common cancer among 
men8. Being asymptomatic at an early stage125,126, late-
stage presentation of prostate cancer continues to remain 
as a challenge in its diagnosis and treatment. Though 
Prostate-Specific Antigen (PSA) blood test is performed 
as a routine diagnostic approach for prostate cancer127,128, 
the PSA levels were found to be normal in about 15% of the 
prostate cancer patients129. A correlation between prostate 
cancer progression and its dependence on androgen 
level was first described by Huggins and Hodgens based 
on their finding that castration significantly reduced 
tumor progression in prostate cancer patients. Since 
then, Androgen Deprivation Therapy (ADT) is the most 
common treatment used for symptomatic metastatic 
cancer patients130. However, later studies have shown that 
it aggravated the problems associated with metastatic 
disease such as osteoporosis, anemia, muscle wasting, 
and depression in prostate cancer patients131. Recent 
studies have brought some new insights into miRNAs as 
an alternate diagnostic and therapeutic target for sensitive 
screening and proper management of prostate cancer 
(Figure 3).

miR-346, miR-361-3p and miR-197 were identified as 
modulators of Androgen Receptor (AR) gene expression 

on screening prostate cancer cells using miR inhibitor 
library132. Unlike the conventional mode of action, they 
enhance the stability of AR target by binding to its 3’UTR 
and thereby facilitate tumor migration and invasion132. 
Inhibition of these miRNA could have additive effects 
when used in combination with anti-androgens for 
the treatment of prostate cancer132. miR-26a acts as 
a suppressor of Extracellular Vesicle (EV) secretion 
associated with prostate cancer by targeting SHC4, 
PFDN4, and CHORDC1, opening the possibility of yet 
another novel therapeutic approach by inhibiting EV 
biogenesis to prevent cell proliferation and cell to cell 
communication133.

Jan C Brase and his group have suggested circulating 
miRNAs, particularly miR-375 and miR-141, as 
promising candidates for novel therapeutic strategies in 
prostate cancer patients134. The levels of miR-375 were 
found to be upregulated in patient samples with systemic 
prostate cancer disease than with the primary prostate 
cancer134. miR-141 has also been reported to have higher 
abundance in high grade tumors than in intermediate 
risk tumors and low-grade tumors134,135. In another study, 
higher expression of miR-141 has been correlated with 
adverse disease condition and biochemical recurrence of 
prostate cancer136. However, the functional role of miR-
375 and miR-141 in prostate cancer is not yet elucidated. 
miR-27a was also found to be highly up-regulated in 

Figure 3.  �Micro-RNAs in prostate cancer: miR-361-3p, miR-197 and miR-346 promoted the expression of Androgen 
Receptor and thereby cell migration and invasion in prostate cancer. miR-203 contributed to cell proliferation and 
epithelial to mesenchymal transition by targeting Insulin Receptor Substrate 1 and Slug, respectively. miR-27a has 
also been implicated in regulating cell proliferation by targeting SPRY2 gene. miR-26a modulated the secretion of 
extracellular vesicles by targeting genes including SHC Adaptor Protein 4, Prefoldin Subunit 4 and Cysteine- and 
Histidine-rich domain containing 1.
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prostate cancer cells promoting proliferation in a sprouty2 
(SPRY2)-dependent manner137.

miR-203 was found to be an inhibitor of proliferation 
in prostate cancer cells in an IRS1-dependent manner by 
blocking ERK pathway138. miR-203 could also possibly 
play a key role in preventing EMT associated with prostate 
cancer138 as its direct target include Slug, a metastasis 
related gene139,140. miRNAs such as miR-711141 and miR-
221-5p142 are reported to act as tumor suppressor in 
prostate cancer by two independent studies, but their 
function is not well characterised.

A holistic approach by Verma et al. had made it possible 
to identify dysregulation of miRNAs across various stages 
of prostate cancer progression using representative cell 
lines for each stage. The stages were categorised into three: 
i) early stage androgen sensitivity, ii) advanced stage with 
loss of androgen receptor function, and iii) Castration-
Resistant Prostate Cancer (CRPC) having repressed 
androgen receptor143. miR-146 was reported to be highly 
up-regulated in advanced stage of prostate cancer with 
PTGS2 as its prime target143. At early stage and CRPC, 
miR-146, was reported to bind 3’UTR of EGFR143. miR-
17 was reported to be significantly up-regulated, while 
miR-205, miR-221, and let-7-g were down-regulated 
irrespective of the stages of prostate cancer. Different 
expression levels of various miRNAs have resulted in a 
patterned expression of their target, AGO2, an upstream 
transcriptional regulator associated with prostate cancer 
progression143,144. AGO2 was reported to be inactive 
during early and CRPC stage, while active in advanced 
stage of prostate cancer143. 

Undoubtedly, the field of prostate cancer research has 
contributed quite a lot to a better understanding of the 
disease progression. However, the research focussing on 
the regulatory effects of miRNAs in prostate cancer in a 
therapeutic point of view must be encouraged.

3.6  miRNAs in Cervical Cancer
Cervical Cancer (CC) is reported to be the fourth 
common form of cancer in female population worldwide 
with an estimated mortality of about 54% of the total cases 
diagnosed with the disease in 2018144. Chronic Human 
Papilloma Virus (HPV) infection is considered to be a 
major factor causing invasive cervical cancer145. Though 
70% of all cervical cancer cases in the world is due to HPV 
types 16 and 18146, other factors like prolonged use of oral 
contraceptives could act as cofactors to HPV leading to 

cervical and pre-cancer147. One of the most devastating 
aspects of cervical cancer is the early progression of its 
primary tumor into metastasis creating a major challenge 
in prognosis and treatment of the disease148-151. Patients 
with locally advanced cervical cancer often exhibit lymph 
node metastases, particularly at orbituator and medial 
external ilac nodes152. Currently, lymphatic metastasis 
is mainly diagnosed using imaging technology such as 
CT and MRI and thereby determining the size of the 
lymphatic node in cervical cancer patients, but there lies 
ambiguity as there is lack of sensitivity associated with 
it153. Recent studies have thrown light over miRNAs that 
play a key role in invasion and lymph node metastasis of 
cervical cancer. For the first time, Liu et al. have reported 
miR-205 to be a positive regulator of the lymph node 
metastasis in a1-chimaerin (CHN1)-dependent manner 
leading to aggressive cervical cancer progression154.

Surprisingly, miR-205 was found to be a direct 
positive regulator of CHN1. However, the mechanism 
behind the positive regulation exhibited by some of the 
miRNAs is not yet clear154-157. Based on the results from 
colocalization studies in situ, CHN1 is suggested to be a 
regulator of F-actin, a key cytoskeletal component that 
facilitates cell migration154,158.

Other major targets of miR-205 include CYR61 
and CTGF, which also promotes metastasis of cervical 
cancer159. Both CYR61 and CTGF, belonging to cysteine-
rich 16/connective tissue growth factor/nephroblastoma 
family, promote cell migration160. miR-205 could possibly 
be developed into a biomarker for detecting locally 
advanced metastases in cervical cancer. 

Wei et al., has reported that a higher level of miR9-5p 
was often associated with cervical cancer patients positive 
for lymph nodes than those with negative lymph nodes161. 
miR-9-5p has been found to induce EMT by targeting 
SOCS5 and bring about tumor progression in cervical 
cancer161. Edatt et al., have reported that miR-106a 
regulates cell migration in vitro by modulating the levels of 
MMP9 in a SIRT1-dependent mechanism162. In addition, 
Raji et al., have reported that miR-106a/b contributes to 
chemoresistance of HeLa cells by targeting SIRT1163.

miR-21 is yet another miRNA found to be oncogenic 
in most of the human cancers, including cervical cancer. 
However, the molecular mechanism of its action is not 
yet clear164-167. Recent studies have elucidated its role in 
EMT in a ZEB1 dependent manner though ZEB1 is not 
a direct target of miR-21168.  Circulating miR-21 has also 
been reported as an indicator of lymph node metastasis 
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of cervical cancer, acting along miR-21/RASA1 axis 
inducing EMT165, in which RASA1 is a known inhibitor 
of Ras protein169. But, high levels of circulating miR-21 are 
correlated with bad prognosis and shorter survival time 
in cervical cancer patients165.

Another miRNA, miR-221-3p, has been reported to be 
a clinically important promoter of lymphatic metastasis in 
cervical cancer patients170. TWIST2-induced miR-221-3p 
acts in a THBS2-dependent manner in accelerating 
invasion in cervical cancer patients170. But it is necessary 
to conduct deep study in order to understand TWIST2/
miR221-3p/THBS2 network completely170 to develop 
potential therapeutic to prevent CC progression.

miRNAs that play an inhibitory role by preventing the 
invasion and metastasis of cervical cancer have also been 
identified. miR-381 was found to be significantly down-
regulated in the cervical cancer cell lines171. G-protein 
coupled receptor GPR34, a direct target of miR-381, is 
often up-regulated in cervical cell lines promoting its 
progression and metastasis171. miR-29a-3p was found to 
be inhibiting the proliferation and metastasis of cervical 
cancer cell lines in a Smad nuclear interacting protein 
1 (SNIP1)-dependent manner172, while miR-432 did 
the same in a fibronectin1 (FN1)-dependent manner. 
Decreased miR-432 expression was found to be associated 
with lymph node metastasis173. However, the roles of miR-
381 and miR-29a3p in lymph node metastasis have not 
yet been elucidated.

miR-143 has been suggested as a biomarker of lymph 
node metastasis before proceeding for a surgery in cervical 
cancer patients174. miR-143, located in chromosome 
5 (5q32), is close to HPV16 integration site175, which 
might interfere with the formation of precursor miR-143 
resulting in its lower expression in HPV16 positive CSC 
patients174. miR-143 was found to be significantly down-
regulated in Cervical Squamous Cancer (CSC) patients 
with lymph node metastasis than without lymph node 
metastasis174. A negative correlation between miR-143 
expression and tumor size in the context of cervical cancer 
has also been reported174. Aerobic glycolysis has been 
considered as one of the key hall-marks of cancer and in 
HeLa cells, miR-23a has been reported to be contributing 
to that by targeting LDH A and LDH B genes176.

Lymph node metastasis-specific miRNAs and their 
target genes associated with cervical cancer progression 
have also been predicted using a cox-proportional hazard 
regression model and in silico tools such as miRDB and 
Targetscan177. The model suggests four miRNAs, namely, 

miR-502, miR-145, miR-142, and miR-33b, and seven 
target genes -CXCL12, IGF1, PTPRC, CDH5, RAD51B, 
REV3L, and WDHD1, to be the key role-players in lymph 
node metastasis in cervical cancer patients. Though the 
levels of miR-145 were consistent with experimental 
conditions178, the levels of miR-142 contradicted with 
that of experimental results179. Similarly, the expression of 
genes CXCL12180, IGF1, WDHD1181-185 and RAD51B186,187 
correlated with that of experiments conducted in cervical 
cancer cell lines; however, their profound role in lymph 
node metastasis remains to be validated. The levels of 
REV3L under experimental conditions188,189 contradicted 
the predicted result from the model. The role of miR-502, 
miR-33b, PTPRC and CDH5 are yet to be identified in the 
context of cervical cancer177. Though the prediction model 
opens up possibilities of developing novel biomarkers or 
therapeutic targets to prevent early metastasis, there is a 
need for experimental validation in physiological context 
of cervical cancer cell lines.

4.  Conclusion
miRNAs associated with endocrine-dependent 
malignancies of human reproductive system could be 
oncogenic or suppressive in nature. Thus, miRNAs present 
themselves as promising candidates for the prognosis 
and treatment of human reproductive system associated 
malignancies. Research till date has helped to identify 
circulating miRNAs in the serum or in extracellular 
vesicles, which would serve as biomarkers. However, the 
functional roles of certain miRNAs have not yet been 
determined. Therefore, in-depth study is required to 
understand the molecular mechanism of these miRNAs 
in the context of endocrine-dependent malignancies.
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