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Abstract
Infertility is a common issue. In India, it has doubled in prevalence, raising health issues in both individuals and commu-
nities. Couples who are infertile suffer emotionally, socially, and financially. The Indian Society of Assisted Reproduction 
estimates that there are up to 27.5 million infertile persons living in India, both men and women. Endocrine disruptors, 
environmental stress, and abnormalities/imbalances in the body’s natural antioxidant defence mechanism all put male 
fertility at greater risk. Studies on how high altitude affects male fertility are very few. Recent research has shown that 
oxidative stress from different sources impairs spermatogenesis and causes an imbalance in the level of male hormones. 
There are two primary causes of oxidative stress: extrinsic and intrinsic, responsible for free-radical generation. There is 
an internal antioxidant defence mechanism that scavenges the reactive oxygen species, i.e., free radical generation which 
neutralizes oxidative stress. These antioxidants are important for the protection of cellular integrity. Apart from the antiox-
idants, various food supplements like melatonin, vitamin C, vitamin E, carotenoids, cysteines, etc., are suitable antioxidants 
for improving male fertility. Therefore, there is a great need for information on some clinically examined edible phyto-
oxidants, including melatonin, for amelioration of oxidative stress-induced male infertility. This review focuses on the 
information available as of now about free radical (ROS)-induced reproductive damages in the plains and the high-altitude 
regions and the role of various antioxidants, including melatonin, in male infertility.

1.  Introduction
Nearly 30 million men nationwide suffer infertility, 
ranging between 2.5% and 15% globally1,2. Males 
account for about 40% of instances of infertility, and 
several diseases, including varicocele, cryptorchidism, 
hypogonadism, and hereditary factors, are known to play 
a role in the infertility process. Furthermore, numerous 
psychological, physiological, and sociocultural issues 
have been connected to infertility3. So, it is necessary 
to understand the mechanism and know the important 
factors of infertility in males to decipher the key stages 
and molecules for clinical management. In today’s 

scenario, the terms oxidative stress, oxidative damage, 
free radicals load, and antioxidants are the most common 
terminologies in scientific research and have become 
an integral part of the scientific debate. Various studies 
revealed that some of the fundamental and common 
factors causing male infertility are cellular oxidative 
damage and free radicals mainly Reactive Oxygen Species 
(ROS). There is plenty of evidence suggesting that free 
radicals (oxidative stress) are related to male infertility by 
reducing sperm motility, sperm DNA damage, decreased 
sperm production, and various genetic disorders. So, it’s 
critical to understand how cellular oxidative damage is 
linked with male infertility.
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Reproduction is an energy-demanding process4. The 
expense of reproduction stands as a fundamental concept 
in the realm of evolution and for the perpetuation 
of the species4. No doubt that reproduction requires 
energy5, and to fulfill the energy needs, both basal and 
local metabolic rates must be enhanced. It is, therefore, 
suggested that the role of stress in reproduction is 
inversely proportional to the fertility rate of both males 
and females. Reproduction contributes to several other 
activities such as an increase in BMR, and a decrease 
in immunity and carbohydrate metabolism in several 
species6-9. Consequently, reproduction enhances energy 
expenditure by uplifting basal metabolic rate10. The 
higher rate of metabolism results in increased free 
radical production. Therefore, one might expect that 
reproduction increases vulnerability to oxidative stress; 
and it is also expected that reproduction will strengthen 
the body’s antioxidant defence mechanisms.

The major target in reproduction affected by 
oxidative stress and free radicals in a variety of species 
is the membrane of spermatozoa (lipid peroxidation) thus 
impairing the motility of sperm11-13. So, one would expect 
that the effort of breeding can generate free radicals 
(oxidative stress) whose efficacy and forte would rely on the 
effectiveness and accessibility of the redox (antioxidant) 
defence system14. As for additional assessments to be 
carried out for the management and treatment of male 
infertility, opinions differ concerning which individuals 
should undergo testing for OS. Furthermore, there is not 
much information on an antioxidant-based therapeutic 
regime for male infertility. Meanwhile, the types, doses, 
and duration of antioxidant action for patients having 
extreme levels of free radicals in blood and semen are 
still controversial. Therefore, the present review aims to 
provide an update on indications about ROS, i.e., free 
radical production, and induction of oxidative stress 
associated with male infertility, its immediate/long-term 
therapeutic control, etc.

2. � Role of Oxidative Stress in 
Male Reproduction

Due to the fast change in lifestyle opted by many 
people, dependency on processed cuisine, and exposure 
to a diverse array of chemicals and drugs, etc., play 
an important role in inducing oxidative stress. In 
the metabolic system, steady-state redox balance is 
maintained at a set value, and deviations from it lead to 

initiating oxidative stress15. In other words, when there 
is an imbalance between the generation of free radicals 
(ROS) and the body’s antioxidant compounds it leads to 
the induction of oxidative stress16,17. ROS are very erratic 
and highly reactive molecules, that bind through a diverse 
group of biomolecules, for example, DNA, proteins, lipids, 
and a few of the carbohydrates18-20. Hence, Leydig cells, 
spermatozoa, etc., are vulnerable to ROS thereby affecting 
male reproductive physiology. The body’s antioxidant 
defence system comprises endogenous and exogenous 
antioxidants that scavenge ROS and diminish their toxic 
effect on the cellular system20.

The inflammation in testicular tissues causes 
infiltration of leukocytes and the production of immature 
sperm; these are other causes of ROS in human 
sperm21,22. ROS are produced in the process by which 
leukocyte activation and chemotaxis promote infection 
and inflammation of the male reproductive organs. 
The breakdown of pathogens triggers the leukocyte 
myeloperoxidase system, which produces ROS23. The 
excessive generation of ROS by leukocytes can ultimately 
result in oxidative stress in semen. These endogenous 
ROS are the primary factor in the production of abnormal 
and immature sperm24. Furthermore, cytoplasm deposits 
in the mid-piece fall off to cause cell elongation and 
compression24.

There are mainly two different sources of oxidative 
stress - exogenous and endogenous. Exogenous sources 
are ionizing radiation, ultraviolet light, processed food, 
drugs (paracetamol, diclofenac, cisplatin, chlorpromazine, 
dexamethasone, etc.), various kinds of pollutants, etc., 
which lead to the generation of various free radicals 
(reactive molecules) such as ROS and Reactive Nitrogen 
Species (RNS). NOS, lipoxygenase, NADPH oxidase, 
mitochondrial Electron Transport Chain (ETC), and 
other naturally occurring enzymes aid in the production 
of different free radicals, including ROS and RNS. 
The mitochondrial ETC, NOS, NADPH oxidase, and 
lipoxygenase are examples of these endogenous sources 
(Figure 1).

Mitochondria are also responsible for the generation 
of many reactive molecules like ROS, besides essential 
cell organelles for ATP generation (Figure 2). Therefore, 
mitochondrial health is very important for maintaining 
spermatozoal motility and their forward progression 
during fertilization. The primary and major ROS 
is superoxide which is produced in mitochondria. 
Superoxide dismutase is an enzyme that helps to 
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convert harmful molecules of superoxide into hydrogen 
peroxide and molecular oxygen which ameliorates 
oxidative stress.

In NOS, Nitric Oxide (NO) is a principal factor 
released from normal endothelial and in inflammation, its 
production by the vasculature increases significantly and 
in combination with other ROS, contributes to oxidative 
stress. The plasma membrane contains the membrane-
bound enzyme complex known as Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH) oxidase, which faces 
extracellular space. One of the main sources of cellular 
ROS is NADPH oxidases (NOXes), which continue to 
play a significant role in the production of ROS in normal 
conditions (Figures 2, 3). Lipid peroxidation is facilitated 
by lipoxygenases, which also catalyze the deoxygenation 
of polyunsaturated fatty acids in lipids and brain tissue25,26. 
So, concurring with the present status of knowledge on 
oxidative stress and male reproduction, we suggest that 

Figure 1.  Pathophysiology of oxidative stress-induced male and female infertility.

Figure 2.  Pathophysiology of oxidative stress-induced mitochondrial dysfunction and spermatozoa damage in  testes
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a heightened vulnerability to oxidative stress might be a 
common cause of infertility in males.

3. � Oxidative Stress-Mediated 
Male Infertility in the  
High-Altitude Environment

Extreme climate, cold stress, high UV-radiation, and 
hypoxia in high altitude environments cumulatively 
affect the hypothalamus–hypophysis–gonad axis, and 
several other cellular and physiological mechanisms 
associated with maintaining oxygen homeostasis, 
cardiovascular, respiratory, and reproductive functions 
in human and animal27-29. Furthermore, hypoxia induces 
ROS generation, which later affects cellular components 
like protein, carbohydrates, lipids, and DNA30. Since, 
spermatozoal integrity is maintained by cholesterol and 
lipid structure, which is significantly, affected under 
hypoxia-induced oxidative stress, spermatozoal damage 
is very common at high altitudes27,31,32.

Several human and rodent studies reported 
imbalances in hormonal secretion, ovulatory activity, 
male infertility, and structural changes in testicular, 
ovarian, and prostate tissues due to hypoxia and oxygen 
deprivation at high altitudes29-37. Seminal examination 
revealed a significant reduction in sperm motility, 
volume, density, total counts, increased dimorphisms, 
and head damage in males exposed to hypoxia prevalent 
at high altitudes27,28,32-37. Therefore, the likelihood of 
becoming pregnant is reduced in both people and animals 
that live at high elevations. It was reported that reduction 
in sperm concentration and testicular dysfunction can be 
the consequences of physical exercise at high altitudes38. 
A recent study reported a decline in semen antioxidant 
potential in lowlander men presented to high altitude, 
whereas antioxidant activity was restored to some extent 
on 70 days onward arrival to the plain region37. Another 
simulation study depicting hypoxia in male rats revealed 
significant damage to seminiferous tubules, reduction in 
testicular and epididymis weights, higher apoptosis in 
germ cells, and low sperm concentration28. This damage 
to gonadal tissues also affects imbalance in reproductive 
hormones, viz. low levels of FSH, LH, testosterone, and 
estrogen. In conclusion, a high-altitude environment 
and hypoxia significantly affect the male reproductive 
functions. However, there are conflicting reports on 
the reversal of adverse changes in male reproductive 

physiology and structural changes due to exposure to 
high altitude after coming to low altitude and plain 
areas. This needs to be investigated separately in the pre-
pubertal, puberty, and post-pubertal stages considering 
the growth phase and reproductive stage of males during 
high-altitude exposure and post-induction. Therefore, 
environmental and physical stress at high altitudes 
limit the performance and reproduction in lowlander 
susceptible animals and human beings, which can be 
improved through antioxidant supplementation and 
exposure normoxic environment.

4. � Mechanism of Oxidative 
Stress-Induced Spermatozoa 
Damage

Since spermatozoa are very dynamic and motile, they 
require for their activation a continuous supply of energy 
so that they are ironic in mitochondria19. Thus, if the 
semen has dysfunctional spermatozoa, it significantly 
raises the production of ROS, and whenever the ROS 
level surges it affects mitochondrial activity and, later, 
functions performed by sperm, such as motility. Recent 
studies have shown that there is leakage of an electron from 
actively respiring spermatozoa which generates mostly 
ROS which are free radicals38. The ROS, such as hydroxyl 
(OH), superoxide (O2–), nitric oxide (NO), peroxyl (RO2), 
lipid peroxyl (LOO) and Thiol [RS-], and non-radical 
compounds (ozone [O3], hydrogen peroxide [H2O2], 
lipid peroxide [LOOH], hypo chloric acid [HOCL], and 
singlet oxygen [-1O2]), are generated which contain 
an unpaired electron that makes highly reactant to any 
biomolecules18,19,39. Excessive semen ROS has been found 
anywhere from 30 to 80 percent of male infertile24. Systems 
that produce ROS have also evidently demonstrated the 
vulnerability-bound hydrogen peroxide to be the most 
deadly oxygen metabolite concerning oxidative stress on 
sperm motility40.

Within human spermatozoa, the majority of ROS 
is O2 – (oxygen radical), and when O2-reacts with H2 it 
leads to the production of H2O2, and thereby OH radicals 
are generated. Due to the disturbance of membrane 
fluidity, these OH-radicals are the strong initiators of the 
LPO cascade and can cause sperm function to be lost41-

43. Hence, sperm cells are prone to lipid peroxidation due 
to the high levels of unsaturated fatty acids they contain 
(Figure 3). Since the energy needed to dissociate carbon 
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and hydrogen is lowest at the mostly methylene position, 
the latter is more vulnerable to attack by free radicals. As of 
significance, the hydrogen constructs the process that starts 
lipid peroxidation get encouraged, producing a lipid radical 
with a carbon core that, when combined with oxygen, 
produces peroxyl (ROO•) and alkoxyl (RO•) radicals, which 
stabilize and eliminate hydrogen atoms from neighbouring 
carbons. Now, it is generally agreed upon that semen OS 
generates sperm cell membrane LPO, and male Sperm DNA 
Fragmentation (SDF), resulting in apoptosis24. So, it is clear 
that in situations where motility is normal, oxidative stress 
can impair spermatozoa’s ability to fertilize44.

There are two major methods of free radical production 
in spermatozoa: - (i) Nicotinamide adenine dinucleotide 
phosphate oxidase system present in the sperm plasma 
membrane may lead to the production of ROS. (ii) In 
the sperm mitochondria, the nicotinamide adenine 
dinucleotide-dependent oxidoreductase reaction may also 
lead to the generation of reactive molecules (Figures 2, 3).

5. � Gene Responsible for 
Abnormality of Spermatozoa 
and Male Infertility

The gene NOX5 in the sperm encodes an enzyme 
NOX5, a calcium-dependent NADPH oxidase found in 

the acrosomal and mid-piece regions which facilitates 
the production of O2 in spermatozoa45. NOX5 was 
first discovered in the human testis. It is activated by 
calcium binding to its N-terminal domain, which causes 
changes in cell shape and leads to oxidative stress. This 
finding provides further evidence that NOX5 is a major 
source of ROS generation in human spermatozoa. It is 
unknown if people with infertility linked to Oxidative 
Stress (OS) have increased NOX5 in their spermatozoa41. 
The morphologically aberrant, immature spermatozoa 
generate intracellular nicotinamide adenine dinucleotide 
phosphate (NADPH) and maintain an excess of the 
remnant body that contains significant levels of the 
cytoplasmic glucose-6-phosphate dehydrogenase 
enzyme. Afterwards, NADPH oxidase NOX5, which is 
intramembrane-based, converts NADPH to ROS.

Epigenetic modifications include DNA methylation, 
acetylation, phosphorylation, etc. It has been noted 
that oxidative stress can affect gene expression despite 
altering the order of genes, which has ramifications for 
epigenetics. ROS directly modify DNA, which influences 
male fertility. It has been demonstrated that disruption 
of DNA methylation disrupts spermatogenesis, resulting 
in a drop in the number of sperm as well as an upsurge 
in infertility46,47. In addition, histone methylation 
dysregulation is linked to breaks in double-stranded 

Figure 3.  Oxidative stress-mediated spermatozoal dysfunction and male infertility
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genetic material, with implications for infertility and the 
development of the next generation48. Lastly, it is believed 
that microRNAs that control spermatogenesis in an 
epigenetic manner are critical for preserving fertility. A 
study was conducted on male patients with infertility in 
non-obstructive azoospermia, the levels of three specific 
microRNAs (miR713p, miR429, and miR141) were 
significantly increased49. The epigenetic process linking 
oxidative stress to infertility is still under investigation. 
Once revealed, they provide a better understanding of 
molecular pathology, serve as therapeutic approaches, 
and afford insights regarding infertility components that 
are passed down from generation to generation50.

6. � Comparative Aspects of 
Oxidative Stress in Males and 
Females

The different results suggest that males might be more 
vulnerable to an increase in breeding effort, which is 
due to a decrease in antioxidant defence in comparison 
to females. ROS are essential for reproductive processes 
including ovulation, but when levels are too high, they 
can damage oocytes through oxidative stress and result in 
infertility. Melatonin’s antioxidant action inside follicles 
may shield oocytes from ROS51. Reproductive processes 
including the growth of follicles, oocyte maturation, 
ovulation, fertilization, implantation, and the development 
of embryos are all impacted by ROS. In conjunction with 
the stimulation of vascularization within follicles, vascular 
endothelial cells and macrophages produce a significant 
quantity of ROS during the ovulation process following 
the Luteinizing Hormone (LH) surge51. The oxidative 
stress that ROS produced in follicles during ovulation 
causes in the oocyte and granulosa cells deteriorations 
of the integrity of the oocytes and may potentially lead 
to infertility51. The administration of melatonin may 
develop into a potential therapeutic approach to stop the 
aging-related decline in oocyte quantity and quality.

7. � The Role of Food-Grade 
Antioxidants and Melatonin in 
Male Infertility

From various studies, it has been found that in a healthy 
male, two main mechanisms protect sperm DNA from 
OS. In the beginning, the genetic material is densely 

coiled and packed with the histone proteins known as 
chromatin to facilitate that the genetic materials are 
slightly bare to free radicals52. Secondly, there are many 
natural antioxidants present in spermatozoa and seminal 
plasma which leads to minimizing ROS production and 
maintenance to its normal levels38. These antioxidants 
prevent free radical formation by reacting with and then 
neutralizing them, which prevents OS onset and preserves 
the spermatozoa53. Antioxidants including coenzyme 
Q10 and lactoferrin are also present in sperm cells54. 
However, in a few infertile men, an insufficient number 
of antioxidants interferes with OS’s complex stability and 
ends up in OS38.

The body’s antioxidant defence balance is crucial to 
keep the equilibrium among free radicals in addition to 
antioxidants; when it fails, the exogenous antioxidant 
supplements can play a preventive role. The foundation 
of oral antioxidant treatment is the understanding that 
initial oxidative damage develops because of increased 
ROS production and reduced seminal antioxidant 
status. Diet plays a very crucial role in day-to-day health 
benefits. So, diets rich in antioxidant contents can prevent 
the formation of oxidative stress in the testes so it must 
be consumed54. The exogenous antioxidant category 
includes a large number of oral antioxidants, which the 
body receives from food sources, e.g., Vitamin C, Vitamin 
E, Coenzyme Q10, N acetylcysteine, carnitines, zinc, 
selenium, and pentoxifylline. Numerous research reports 
have been carried out to evaluate the efficacy of oral intake 
of antioxidants as a male infertility treatment.

Numerous physiological functions that are essential 
to our bodies, such as breathing, digestion, metabolizing 
alcohol, drug exposure, heat, environmental damage, 
pollutants, and metallic substances play a role in the 
development of OS, so all these have been shown to 
contribute to OS. It is reported that oxidative stress is 
associated with the development of numerous metabolic, 
and chronic disorders or cancers17,18,55. It is also recognized, 
in addition, that activities that may cause a rise in the 
internal body temperature of the scrotal area such as lengthy, 
prolonged work hours, hot baths, gyms, and prolonged 
driving should be avoided. Lifestyle modifications can help 
to reduce the generation of ROS and perhaps address the 
disparities that lead to a state of oxidative stress.

7.1  Vitamin C and Carotenoids
Vitamin C and carotenoids are natural and essential 
antioxidants. They preserve the integrity of cell membranes 
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and control the process of spermatogenesis. They also 
play a role in regulating spermatogenesis. Citrus fruits 
and effervescent berries are good sources of water-soluble 
vitamin C, which has antioxidant qualities. Several studies 
have examined the effects of vitamin C consumption on 
spermatozoa and found noteworthy antioxidant benefits56. 
Furthermore, decreased Vitamin C and expanded 
ROS ranges had been found in the reproductive fluid 
(seminal fluid) of males having azoospermia57. Vegetable 
hues such as orange, red, yellow, and purple naturally 
include substances called carotenoids. These substances 
function as predecessors of vitamin A, of which retinol is 
a necessary element. Carotenoid deficiency can result in 
reduced sperm motility and male infertility58.

7.2  Vitamin E
Vitamin E (alpha-tocopherol) is a biological compound 
that is fat-soluble and frequently distributed across cell 
membranes (Table 1). Its antioxidant activity is based 
primarily on suppressing ROS-induced peroxidation 
of lipids and removing the hydroxyl extra electron-
containing molecule (free radicals) and superoxide. 
Therefore, alpha-tocopherol primarily offers protection 
from free radical damage in the components of the sperm 
membrane and, to a lesser extent, reduces ROS production. 
Therefore, Vitamin E primarily protects sperm membrane 
components from damage and, to a lesser extent, reduces 
ROS production. Its oral administration significantly 
increases sperm motility by reducing the malondialdehyde 
an end product of lipid peroxidation at the time of sperm 

production and is, therefore, a secondary marker of the 
intensity of intracellular processes59.

7.3  Carnitine
Carnitine or levocarnitine is a naturally occurring amino 
acid that plays a role in mitochondrial transfer and 
oxidation of long-chain fatty acids, its chemical structure 
was established in 1927 as (3-hydroxy-4- trimethylamine 
butyrate) 60,61. It serves as a vital substance that helps 
with the transportation of long-chain fatty acids within 
the mitochondrial matrix. This process facilitates 
cellular energy production through oxidation62,63. An 
important aspect here is the high levels of carnitine in 
the male reproductive tract, particularly the epididymis. 
This suggests that it plays an important function in the 
consumption of energy and maturation of sperm64,65.

7.4  Melatonin
Oxidative stress-induced endocrine disruption has a 
deleterious effect on pineal gland secretion which affects 
the reduction in melatonin levels in the body66. Thereafter, 
it has a chain of effects on the biological clock and 
metabolic function. Melatonin, a neurohormone, is an 
excellent free-radical scavenger. It scavenges/neutralizes 
free radicals (ROS) which are produced by oxidative stress. 
Melatonin also activates the major enzymatic antioxidant 
mechanisms of body tissues67,68 and is also found in human 
sperm69. Melatonin, with its antioxidant and anti-apoptotic 
effects, up-regulates antioxidant defence mechanisms 
and inhibits apoptosis, thus preventing dexamethasone-

Table 1.  Physiological and ameliorative role of some food-grade natural antioxidants in male reproduction and 
fertility

Sl. No. Name of Antioxidant Role and their action Effects

1 Vitamin C Counterbalance free radicals Protects viability as well as motility.
2 Vitamin E Neutralizes free radicals Enhances the function /activity of many 

antioxidants and reduces the oxidation of lipids.
3 Cysteines Reduced glutathione (GSH) formation is 

increased by cysteines
Prevent lipid peroxidation.

4 Pentoxifylline An important second messenger cAMP 
breakdown is prevented and it conquers the 
formation of pro-inflammatory factors

Reduces the peroxidation of lipids

5 Carotenoids Quenche singlet molecular oxygen Limit the oxidation of lipids
6 Carnitine An energy source and balance between free 

radicals and antioxidants by reducing reactive 
molecules (free radicals)

Prevents lipid peroxidation and also protects 
from damage to the DNA

7 Bilirubin Extracellular antioxidants
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induced testicular damage70. In addition to eliminating 
the very harmful hydroxyl radical (OH)71,72, it has been 
reported that melatonin also eliminates many reactive 
oxygen and nitrogen species such as singlet oxygen (1O2;)

73, 
nitric oxide (NO)74, peroxynitrite anion (ONOO) and/
or its metabolites74, and hydrogen peroxide (H2O2;)

75. In 
addition to these, melatonin changes the enzyme activities 
which metabolize free radicals76-78 and alters membrane 
fluidity79,80. This reduces the ability of damaging species to 
attack macromolecules in this structure.

8.  Conclusion
Oxidative stress and free radicals are known to be detrimental 
to the health of a healthy individual. This review indicates that 
oxidative stress is central to structural and DNA damage of 
spermatozoa and induces male infertility in plain and high-
altitude regions. Therefore, the evaluation of antioxidant 
enzymes, oxidative stress parameters, and body antioxidant 
levels are necessary for new diagnostic methods for diagnosing 
diseases related to reproduction. In addition to assessing 
sperm oxidative stress, blood redox status, and leukocyte ROS 
level, this also opens new possibilities and small applications 
for specialists to test sperm quality and monitor fertility. There 
are various antioxidant supplements available, including 
melatonin, which may be used in male infertility to ameliorate 
free radicals-mediated/induced male infertility. Therefore, 
dealing with the redox parameters may help reduce systemic 
oxidative stress as an aspect of male infertility. It can help 
develop novel treatment strategies by taking antioxidant 
supplements to improve the detection along management of 
male infertility.
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