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Steroid honnones regulate diverse biological functions by binding to intracellular 
receptors, which in turn alter the expression of genes. According to the common theory of 
steroid action, steroids modulate gene transcription by interacting with intracellular receptors, 
which act as ligand dependent transcription factors. Steroids regulate various genes either 
by positive or negative expression (1,2). Most of the steroid receptors are located in side the 
cell and hence the steroids need to get into the ceils and alter gene expression. The 
receptors for glucocorticoid, mineralocorticoid, progesterone and androgen are cytoplasmic 
and that of estrogen is nuclear (3). These receptors exist in inactive state in the cytoplasm 
or nucleus. The inactive state is maintained by their interaction with a group of receptor 
associated proteins called the chaperones and cochaperones (4,5). The mode of action of 
steroids requires intracellular localization of the steroid receptor and typically takes at least 
30 to 60 min for the response. These cellular responses of steroids are known as the 
classical genomic action of steroids, which are characterized by a specific delay and sensitivity 
towards inhibitors of transcription and translation. The detailed description of steroid actions 
was the result of intensive long term research on steroid hormones. 

Recently, it has become evident that some of the steroid hormones' actions are not 
due to these classical genomic mechanisms since they occur too rapidly following steroid 
exposure and appear insensitive to the action of protein synthesis inhibitors. A rapid response 
to steroids that occurs within seconds or minutes and likely not to be mediated by the 
genome is termed nongenomic. The first description on nongenomic action of steroid was 
reported 60 years ago as the anesthetic effects of progesterone, which occurred almost 
immediately after the application of the honnone (6). In 1963, Klein and Henk (7) demonstrated 
that administration of aldosterone in men increased peripheral vascular resistance and blood 
pressure within 5 minutes, suggesting a nongenomic mechanism of action because of the 
short time frame. Almost concurrently, Spach and Streeten, in 1964 (8) reported in vitro 
effects of aldosterone on Na* exchange in dog erythrocytes. Lacking nucleus, the in vitro 
effects in these cells must be nongenomic in nature. Further more, rapid effect of glucocorticoids 
on isolated synaptosomes was recognized in the mid 1970s' (9). Advancement in this field 
has, however, been very slow until few years ago, when evidence at the cellular level started 
accumulating to support and further clarify this novel mode of action of steroids. 

Nongenomic steroid actions have been studied in many eukaryotes including plants 
(10), and in diverse species of animals from crayfish to human (11-19). These steroid actions 
have been characterized as rapid effects lasting from milliseconds to less than an hour (20). 
Rapid onset, equally fast recovery after steroid removal, insensitivity to inhibitors of protein 
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synthesis, interaction at plasma membrane or membrane binding and transduction via rapid 
cellular mechanisms known to mediate peptide and neurotransmitter actions (14) are other 
important characters of nongenomic action. Early observations of rapid steroid actions have 
been expanded during recent years. Through advances over the past ten years, it is now 
clear that all classes of steroids including the secosteroid vitamin D and thyroid hormones 
can rapidly alter physiological processes through nongenomic ftiembrane associated 
mechanisms typically ascribed to the fast effects of neurotransmitters and peptide hormones 
(21-24). 

Existence of nongenomic action of glucocorticoid (GC) is well established in vertebrates, 
especially, in homeotherms. Dallman and Yates, in 1969(25) observed a rapid feed back 
action of GC on pituitary, which occurred within 5 minutes after an increase in plasma level 
of GC. Glucocorticoid rapidly inhibited ascorbic acid uptake in sectioned pituitary cells (26). 
Electrophysiological and behavioural studies suggest that glucocorticoids might also rapidly 
modulate neuronal activity in the nervous system. In gyinea pig, Cortisol hyperpolarized the 
membrane potential and inhibited electrical discharges of isolated celiac ganglions within two 
minutes (27). In contrast, corticosterone enhanced neuronal firing rates of cardiovascular 
neurons in rat (28). Dexamethasone reversibly inhibited acetylcholine induced current 
amplitudes within several seconds in isolated guinea pig chromaffin cells (29). Several studies 
also support nongenomic action of glucocorticoids in the cerebral cortex of mammalian brain. 
Corticosterone stimulated depolarization dependent Ca * uptake within 15 seconds in brain 
synaptosomes and promoted calmodulin binding in non-nucleated synaptic membranes (30,31). 
The importance of nongenomic steroid actions to the whole organism is best demonstrated 
by the rapid behavioural responses seen during acute steroid exposure. In white crowned 
span-ows, non-invasive corticosterone treatment leads to rapid increases in behavioural activity 
(such as perch hopping) analogous to those responses seen during natural disturbances 
(32). Corticosterone rapidly suppressed male courtship clasping behavior in rough skinned 
newt Taricha granulosa (33). Administration of corticosterone, at concentration that mimics 
plasma levels, produced stress-increased locomotion within 15 minutes in rodents (34). 

It is well known that glucocorticoids elicit a set of reflex responses necessary for 
maintaining homeostasis, particularly during periods of stress. In the absence of a negative 
feed back, unchecked glucocorticoid activity can prove hazardous, leading to a collapse of 
body function. One primary action of glucocorticoids is to control their own secretion. 
Corticosterone can suppress stimulus mediated CRH secretion with a latency period of only 
seconds to minutes (35). Like CRH secretion, glucocorticoids inhibited PRL secretion through 
membrane associated nongenomic pathway. Glucocorticoids attenuate nonnal noctumal peaks 
pf PRL in humans and suppress vasoactive intestinal peptide-induced PRL release and 
intracellular cAMP levels within 30 minutes in rat pituitary cells. In tilapia pituitary cells, 
Cortisol inhibited PRL release within 10-20 minutes (15,16,36). Glucocorticoids profoundly 
influence hepatic glucose metabolism in vivo and in vitro. In rat hepatocytes, dexamethasone 
reduces glycogen stores by directly affecting glycogen synthetase and phosphorylase activity 
(37). Investigations support a nongenomic glucocorticoid action on pigment redistribution, a 
phenomenon that might be crucial for the rapid color changes characteristic of many 
ectothemns. Dexamethasone caused rapid morphological changes, flattening of cell body 
and the expansion of dendrites in gold fish melanocytoma cells (38). From the literature 
reviewed above, it is obvious that glucocorticoids are involved in a number of nongenomic 
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responses at different levels of biological functions mostly in mannmals, however, studies are 
meager in sub mammalian groups. 

The well known effects of sex hormones are mediated through genomic mechanisms 
involving intracellular receptors. However, there is evidence that sex hormones can induce 
rapid responses through interaction with cell membrane and consequent changes in membrane 
function (21). An increasing body of evidence indicates that in several cell types of reproductive 
tissues, estrogens exert physiological effects that are too rapid to be mediated by the sequence 
of genomic activation. Pietras and Szego were the first to report the rapid effect of estrogen 
in 1975 (39). Rapid responses to estrogen were later noticed in preoptic septal and neostrial 
neurons (40), pituitary cells (41), and maturing human oocyte and granulosa cells (42,43). 
Low physiological levels of 173 estradiol increased Ca^* influx in enterocytes of female rat 
duodenum within 10 minutes (44). Increase of cAMP in response to estrogen in vascular 
smooth muscle cells, breast cancer, and uterine cells (45-47) are thought to be related to 
rapid estrogen-induced activation of membrane adenylate cyclase. Estrogen and other 
estrogenic compounds may exert rapid effects in the brain involving modulation of dopamine-
induced excitatory responses and synaptic and other physiological functions (48,49). Synthetic 
estrogen, diethylstilbestrol (DES), significantly decreased gonadotrophin-stimulated 11-
ketotestosterone productions in Atlantic croaker testes (50). 

It is well recognised that 17^ estradiol protects women against the development of 
cardiovascular diseases, such as atherosclerosis (51). The mechanisms of protection are 
many and represent actions of 17p estradiol at both the membrane and nuclear receptors. 
A variety of actions in CNS have been attributed to actions occuning at the plasma membrane. 
In several in vitro or in vivo models of experimental cerebral ischemia, 17p estradiol has 
preserved neurovascular endothelial cells and neurons (38, 52) .In human P2X receptor 17p 
estradiol rapidly and reversibly inhibited whole cell receptor cation current (53j. The support 
for the existence of distinct estrogen binding sites in the membrane came from the functional 
studies on genomic effects of 17p estradiol (54, 55). Estrogens have vasodilator actions 
involving both endothelium dependent (56) and endothelium independent mechanisms through 
a direct effect on smooth muscle cells (57). Estrogen rapidly increased serosal potassium 
transport in human colon 58) and prevents caspase-6-mediated neuronal cell death in human 
(59). Nongenomic estrogen-induced effects in most cases are likely to be mediated by a cell 
surface ER that is structurally related if not identical to the classic ER. However, as the 
spectrum of nongenomic actions is so diverse, more than one mechanisms of action have 
to be assumed, and more than one membrane receptors are likely to be involved. 

The regulation by progesterone on myometrial contraction and related wider subjects 
of endocrinology of pregnancy and parturition has been reviewed several times during the 
last century. However, new evidence specifies that several progesterone metabolites and 
some synthetic steroids stimulate progesterone-like uterine relaxing effects (60). Progesterone 
has been shown to rapidly stimulate CI' (61) and Na"̂  (62) fluxes in human spemnatozoa. 
Besides these, a number of other rapid progesterone effects have been demonstrated, which 
include a dose dependent relaxation on rat saphenous artery (63), inhibition of contractile 
activity of murine jejunum (64), sodium absorption in Xenopus kidney (65), platelet aggregation 
in rat aorta (66), 
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The effects of androgens seem to be exactly similar to those of estrogens. A short-
term administration of testosterone rapidly increased coronary blood flow in animal models 
(67). Rapid action of androgens is mainly concentrated on reproductive cells. Rapid effects 
of testosterone on intracellular Ca * concentration have been studied in human granulosa 
luteinizing cells. (68). In Sertoli cells, rapid elevation of cytosolic Ca^*ion by testosterone and 
dihydrotestosterone was reported (69,70). These effects were also induced by testosterone-
BSA conjugate, indicating a surface membrane effect (69). Testosterone was also known to 
induce intracellular Ca *ion in skeletal muscle cell cultures in rat (71). Testosterone inhibited 
arginine vasopressin release from hypothalamic slices in rat (72). Testosterone rapidly and 
possibly through nongenomic mechanism blocked the adenosine vasodilator effect and 
increased vasoresistance on isolated and perfused heart of rat (73). 53 dihydrotestosterone 
stimulated relaxation of rat aorta by acting directly on the membranes of smooth muscle cells 
(60). The androgen-induced increase of cellular cAMP levels may influence cell growth in the 
human prostrate cancer cell line through the intemnediacy of sex hormone binding globulin 

, (74). These effects were independent of sex and of the expression of classic androgen 
receptor (75). Testosterone inhibited chloride secretion in cultured rat efferent duct epithelia 
(76). 

Rapid action of steroid homnones, vitamin D3 and thyroid hormones on cellular signaling 
may be transmitted by specific cell membrane receptors. Although no receptor of this kind 
has been fully cloned up till now, binding sites in cell membranes have been characterized 
exposing binding features compatible with an involvement in rapid signaling. Characteristics 
of putative membrane receptors are completely different from those of intracellular steroid 
receptors (77). Such putative receptors are identified for almost all steroids. Estrogen 
membrane receptors are identified in pituitary cells of rat (78), in the uterus of rabbit (79) and 
in the testes of Atlantic croaker (50). Similar membrane receptors are also identified for 
glucocorticoids in amphibian brain (33,80-84), and in rat liver (85). However, the nature of 
GC membrane receptor is still a matter of debate. Considering the major achievements in 
this field, two principal candidates are suggested. On the one hand, membrane GC receptors 
in amphibian brain have been intensively studied that seem to be distinct from intracellular 
GR. On the other hand, data from mouse lymphoma cells suggest that membrane GC 
receptors are modified from intracellular GR (13). A membrane-associated testosterone 
receptor was identified in Pseudomonas testosteroni (86). Recently, testosterone receptor on 
cell surface of T cells and on IC-21 macrophages have detected by the use of confocal laser 
scanning microscopy and flow cytometry (87,88). 

In addition to the proposed specific putative membrane receptors for steroids, recent 
studies on estrogen action indicate an involvement of the classical intracellular ER in rapid 
steroid action (78,79). These findings twisted the earlier concept that membrane receptors 
for steroids differ from the classical intracellular receptors. According to Caulin-Glaser ef a/., 
1997(89), this may be due to the possibility of locating some intracellular ER at cell surface. 
Recently, Falkenstein et al., 2000 (13) have classified membrane receptors responsible for 
nongenomic action of steroids as follows. (1) Classical intracellular receptors identified for rat 
pituitary cells (78), rat hippocampal neuron (90), (2) Nonclassical steroid receptors without 
co-agonists. These types of receptors are identified for vitamin D (91,92), (3) Nonclassical 
steroid receptors with co agonists, identified mainly for neurosteroids (93,94), and (4) without 
any receptors (direct nongenomic action); this nonspecific steroid action can be expected at 
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non-physiological concentrations of steroids. This type of steroid action may occur by altering 
the physicochemical membrane properties such as the fluidity and microenvironment of 
membrane receptors (95,96). For a better understanding of nongenomic steroid action even 
in the dinicai context, future research will have to target the cloning of membrane receptors 
for steroids and the evaluation of the clinical relevance of rapid steroid effects in general. 

The rap>id effects of steroid hormones are manifold. They involve plasma membrane 
binding, changes in membrane electrical activity, Ca *̂ handling, G and Ras proteins, cAMP, 
cGMP, IP (3), DAG, phosphodiesterases, protein kinases, tyrosine kinases, ER kinases, and 
mitogen activated protein kinases (MAPKs) and nitric oxide synthase (97). In some cases 
these rapid actions of steroids are mediated through the classical steroid receptors that can 
also function as a ligand- activated transcription factor,, whereas in other instances the 
evidence suggests that these rapid actions do not involve the classical steroid receptors. 

Recently, Chen and Qiu in 1999 and 2001 (98,99) reported multiple signal transduction 
pathways for the rapid, nongenomic effects of glucocorticoids. Latest experimental results 
indicate that nongenomic effects of glucocorticoids are remarkably pleiotropic. A lot of 
observations indicated the potential involvement of G proteins (80), protein kinase A (15), 
protein kinase C (100) and mitogen activated protein kinase (101) pathways in evoking a 
nongenomic effect in these glucocorticoid treatments. 

Latest classification of nongenomic action of steroids 

The rapid effects of steroids have been grouped into different classes. But recently, 
Cato et al., 2002 (3) have classified the rapid effects into three categories based on their 
mechanism of actions. 

/. Nonreceptor mediated steroid actions at plasma membrane: 

Steroids may modulate protein activity without first binding to a receptor to initiate a 
signaling cascade. 

Progesterone 

Progesterone 

Aldosterone 

Rapidly & reversibly blocks voltage gated K* channels 

Activate Ca^' influx in human spenn cells 

Enhance Ca^* Ions & cAMP In knock out mice 

Ehring et a!., 1998 

Blackmore et al., 1990 

Haseroth et al., 1999 

//. steroid effects through membrane associated receptors other than the 
classical steroid receptors: 

The effects appear to be mediated by transmembrane receptors that are distinct from 
classical intracellular receptors 

17p estradiol 

17P estradiol 

173 estradiol 

Androgen 

Androgen 

Androgen 

Chicken granulosa cells 

Splenic T cells 

Osteoblasts 

Macrophages 

Splenic T ceils 

Osteoblasts 

Merely et al., 1992 

Benten et al., 1999 

Lieberherr et al., 1993 

Benten et al., 1999 

Benten et al., 1999 

Liebertien- et al., 1994 
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///. Rapid effects occurring through membrane b°ound classical steroid 
receptors: 

This is the most clearly defined rapid effect of steroids occurring through membrane 
bound classical steroid receptors. The membrane bound hormone binding entities were 
confirmed as classical steroid receptors by the use of antibodies directed to different regions 
of steroid receptors 

ER a 
ER a 

GR 
GR 

Pappas et al., 1994 

Pappas e( al., 1995 
Gametchu et al., 1991 

Gametchu et al., 1991 

Caveolae act as site for rapid action of steroids? 

Caveolae are small plasma membrane vesicles most abundant in simple squamous 
epithelium. They may be flat, or invaginated and expressed singly or in bundle like clusters 
resembling grapes (102). These tiny vesicles are believed to act as sites for rapid action of 
steroid receptors. Both ER and AR have been identified in caveolae, where they interact with 
caveolin (a transmembrane phosphoprotein in caveolae) in a ligand dependent manner 
(103). One of the actions of steroid receptors thought to take place in caveolae is the 
estrogen-mediated rapid increase in endothelial nitric oxide synthetase activity leading to the 
production of nitric oxide in human endothelial cells (104). 

Nongenomic action of steroids in teleosts 

All the membrane effects of nongenomic action are focused primarily in mammals. 
This may be due to the pharmacological significance of nongenomic action of steroids in 
mammals. Till now, very little information on rapid action of steroids is reported in sub 
mammalian groups, particularly in teleosts. Recently, we have reported nongenomic action 
of steroids on branchial Na* K'and Ca ATPase's activity in a teleost (17,18) and nongenomic 
action of steroids on lipid metabolism in a vertebrate (19) for the first time. The nongenomic 
action of steroids on branchial Na* K* ATPase activity seemed to be mediated by Ca * ion in 
our study. We reported that treatment with 0.1 pg / g body weight Cortisol, corticosterone, 
testosterone and DES in vivo produced significant increase in the activity of branchial Na*-
K* ATPase and Ca " ATPase in Oreochromis mossambicus. The maximum activity for both 
Na*-K* ATPase and Ca * ATPase was noticed after 30 or 60 minutes for ail hormones. All 
the hormones significantly increased Na*, K' and Ca * ions after 30 minutes in vivo. It was 
observed that 10 M Cortisol, corticosterone and testosterone rapidly and specifically enhanced 
Na*-K* ATPase as early as 5 minutes in the gill culture study. The activity of Na*-K* ATPase 
in vitro was further increased at 10 minutes and the maximum activity was at 15 minutes. 
In the case of DES, Sminutes incubation did not produce any significant difference, while that 
of 10 minutes significantly stimulated Na*-K* ATPase activity and the maximum activity was 
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at 15 minutes like that of testosterone. The rapid action of ATPase activity was not blocl<ed 
by 0.1 )jg / g body weight actinomycin D in vivo and 10' M actinomycin D in vitro when treated 
prior to steroids. This action seems to be mediated through Ca * ion, involving a nongenomic 
pathway, although the physiological significance of such a pathway has not been clear. 
Cortisol and testosterone produced rapid and opposite effects on the lipogenic enzymes 
studied in the liver of O. mossambicus. Cortisol significantly decreased the activities of malic 
enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), as early as 5 minutes and 
isocitrate dehydrogenase (ICDH) as early as 10 minutes in vitro (10 M), and 30 minutes in 
vivo (0.1|jg/g body weight) whereas the same doses of testosterone significantly stimulated 
the activity of all the enzymes as early as 5 minutes in vitro and 30 minutes in vivo. 
ActinomycinD treatment did not interfere with the inhibiting effect of Cortisol on enzyme 
activities when measured at 10 min in the in vitro system. The transcriptional inhibitor appeared 
to partially block the effect of Cortisol in vivo. The stimulatory effect of testosterone was 
insensitive to the action of actinomycin D both in vivo and in vitro. These effects appear to 
be brought about independently of new protein synthesis because the rapid responses 
occurred within a latent period of 5-30 minutes and were insensitive to the action of actinomycin 
D, suggesting a nongenomic action. The opposing action of Cortisol and testosterone on 
lipogenic enzymes indicates that they are not only working in a cataboiic and anabolic 
fashion, respectively, but also suggests their actions are specific. That is, the actions of 
Cortisol are not one that would simply reflect an inhibition by any steroid, since testosterone 
had the opposite effect. 

Cell membrane forms of steroid hormone receptors coupled to intracellular signaling 
pathways may also play an important role in hormone action. Membrane-initiated signals 
appear to be the primary response of the target cell to steroid hormones and may be 
prerequisite to subsequent genomic activation. Recent dramatic advances in the field of 
steroids' action at molecular level have established that cell surface forms of steroid hormone 
receptors coupled to intracellular signaling pathways may play a vital role. In view of recent 
developments, it may be assumed that membrane-initiated signals appear to be the primary 
response of the target cell to steroid hormones and may be prerequisite to subsequent 
genomic activation. 

Frequent information on rapid steroid hormone effects in diverse cell types cannot be 
explained by the generally existing theory that centers on the activity of hormone receptors 
located exclusively in the cytoplasm and nucleus. Cell surface receptors of steroid hormone 
coupled to intracellular signaling pathways may also play a vital role in hormone action. 
Membrane-initiated signals appear to be the primary response of the target cell to steroid 
hormones and may be prerequisite to subsequent genomic activation. Recent dramatic 
advances in this area have intensified efforts to delineate the nature and biologic roles of all 
receptor molecules that function in steroid hormone-signaling pathways. Thus nongenomic 
mode of action of steroids has reflected profound* implications for our understanding of 
steroid hormone actions in responsive cells and may lead to development of novel approaches 
for the treatment of many cell proliferative, metabolic, inflammatory, reproductive, 
cardiovascular, and neurologic diseases. 
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