DNA Methylation and Histone Modifications Associated with Male Germ Cell Differentiation

Jump To References Section

Authors

  • Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram – 695 014, Kerala ,IN
  • Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram – 695 014, Kerala ,IN
  • Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram – 695 014, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2018/23323

Keywords:

Epigenetics, Histone, Meiosis, Spermatogenesis, Testis

Abstract

Spermatogenesis is a highly regulated process in which undifferentiated spermatogonial stem cells differentiate to form highly specialized sperm cells capable of fusing with the ovum to form a zygote. This is achieved through tightly controlled regulation of gene expression which depends crucially on DNA accessibility. DNA accessibility is largely dependent on epigenetic modifications including DNA methylation and modifications of the histones. DNA methylation is catalysed by DNA methyltransferase (DNMT) enzymes. The spatial and temporal expression levels and functional features of the DNMTs are thought to landscape the gene expression in the male germ cells. On the other hand, the histone code is defined by an array of molecules that bring about post-translational modifications of various histones at various sites. All these intricate events orchestrate germ cell specification, stem cell maintenance, mitotic amplification, initiation of meiosis and post-meiotic differentiation events. This review summarizes the sequential changes in DNA methylation and the histone modification profiles in germ cells leading to the production of functional spermatozoa.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2019-11-26

How to Cite

Soumya, A., Radhakrishnan, K., & Kumar, P. G. (2019). DNA Methylation and Histone Modifications Associated with Male Germ Cell Differentiation. Journal of Endocrinology and Reproduction, 22(1), 1–20. https://doi.org/10.18311/jer/2018/23323

Issue

Section

Invited Review Article

 

References

Weinhold B. Epigenetics: The Science of Change. Environ Health Perspect [Internet]. 2006 Mar; 114(3):A160–7. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC1392256/

Nevin C, Carroll M. Sperm DNA methylation, infertility and transgenerational epigenetics. J Hum Genet Clin Embryol. 2015; 1(004):9–10.

Felsenfeld G. A brief history of epigenetics. Cold Spring Harb Perspect Biol [Internet]. 6(1):a018200. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24384572

Ge S-Q, Lin S-L, Zhao Z-H, Sun Q-Y. Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: implications for male fertility and offspring health. Oncotarget. 2017 Aug; 8(32):53804–18.

Frí­as-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol [Internet]. 2017 Dec 22; 8:2483. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29312192

Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med [Internet]. 2016 Jun 23; 43(2):59–81. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925870/

Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline. Epigenomics. 2016 Oct; 8(10):1399–413.

Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev [Internet]. 2014 Apr 15; 28(8):812–28. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24736841

Gold HB, Jung YH, Corces VG. Not just heads and tails: The complexity of the sperm epigenome. J Biol Chem. 2018 Sep; 293(36):13815–20.

Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science [Internet]. 2010 Jul 2; 329(5987):10.1126/science.1187945. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3863715/

Weber AR, Krawczyk C, Robertson AB, KuÅ›nierczyk A, Vågbí¸ CB, Schuermann D, et al. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun [Internet]. 2016 Mar 2; 7:10806. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778062/

Donkin I, Barres R. Sperm epigenetics and influence of environmental factors. Mol Metab. 2018 Feb; 14:1-14. https://doi.org/10.1016/j.molmet.2018.02.006

Illum LRH, Bak ST, Lund S, Nielsen AL. DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol. 2018 Feb; 60(2):R39–56.

Uysal F, Akkoyunlu G, Ozturk S. DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod Biomed Online. 2016 Dec; 33(6):690–702.

Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011 Sep; 26(9):2558–69.

Urdinguio RG, Bayon GF, Dmitrijeva M, Torano EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015 May; 30(5):1014–28.

Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015 Dec; 104(6):1385–8.

Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017 Jul; 5(4):695–703.

Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010 Oct; 94(5):1728–33.

Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012 Jan; 28(1):33–42.

Hogg K, Western PS. Refurbishing the germline epigenome: Out with the old, in with the new. Semin Cell Dev Biol. 2015 Sep; 45:104–13.

Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development. 2012 Jan; 139(1):15–31.

Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci [Internet]. 2013 Jan 5; 368(1609):20110328. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23166392

Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, et al. DNA methylation in spermatogenesis and male infertility. Exp Ther Med [Internet]. 2016/08/04. 2016 Oct; 12(4):1973–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27698683

Güneş S, Kulaç T. The role of epigenetics in spermatogenesis. Turkish J Urol [Internet]. 2013 Sep; 39(3):181–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26328105

Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: The selected survival of imprints. Int J Biochem Cell Biol. 2015 Oct; 67:128–38.

Song N, Endo D, Koji T. Roles of epigenome in mammalian spermatogenesis. Reprod Med Biol. 2014 Apr; 13(2):59–69.

Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front cell Dev Biol. 2018; 6:50.

Yao C, Liu Y, Sun M, Niu M, Yuan Q, Hai Y, et al. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis. Reproduction. 2015 Jul; 150(1):R25-34.

Hahn MA, Szabó PE, Pfeifer GP. 5-Hydroxymethylcytosine: A stable or transient DNA modification? Genomics [Internet]. 2014; 104(5):314–23. Available from: http://www.sciencedirect.com/science/article/pii/ S0888754314001578

Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget [Internet]. 2016 Nov 24; 8(3):5629–37. Available from: https://www.ncbi.nlm.nih. gov/pubmed/27895318

Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Herault Y, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science. 2016 Nov; 354(6314):909–12.

Jain D, Meydan C, Lange J, Claeys Bouuaert C, Lailler N, Mason CE, et al. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet. 2017 Aug; 13(8):e1006964.

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell [Internet]. 2012 Dec 28; 48(6):849–62. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23219530

Guibert S, Forné T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res [Internet]. 2012 Apr; 22(4):633–41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22357612

Li N, Shen Q, Hua J. Epigenetic Remodeling in Male Germline Development. Stem Cells Int. 2016; 2016:3152173.

Seki Y. PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency. Front cell Dev Biol. 2018; 6:12. doi: 10.3389/fcell.2018.00012.

Okashita N, Kumaki Y, Ebi K, Nishi M, Okamoto Y, Nakayama M, et al. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development. 2014 Jan; 141(2):269–80.

Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013 Jul; 14(7):629–37.

Ewen KA, Koopman P. Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol. 2010 Jul; 323(1):76–93.

McCarrey JR. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod. 2013 Aug; 89(2):47.

McCarrey JR. Transition of Prenatal Prospermatogonia to Postnatal Spermatogonia BT - The Biology of Mammalian Spermatogonia. In: Oatley JM, Griswold MD, editors. New York, NY: Springer New York; 2017. p. 23–38. Available from: https://doi.org/10.1007/978-1-4939-7505-1_2

Tseng Y-T, Liao H-F, Yu C-Y, Mo C-F, Lin S-P. Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction. 2015 Sep; 150(3):R77-91.

Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci [Internet]. 2010 May 27; 365(1546):1663– 78. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/20403877

Geyer CB. Setting the Stage: The First Round of Spermatogenesis BT - The Biology of Mammalian Spermatogonia. In: Oatley JM, Griswold MD, editors. New York, NY: Springer New York; 2017. p. 39–63. Available from: https://doi.org/10.1007/978-1-4939-7505-1_3

Niedenberger BA, Geyer CB. Advanced immunostaining approaches to study early male germ cell development. Stem Cell Res [Internet]. 2018; 27:162–8. Available from: http://www.sciencedirect.com/science/article/pii/ S1873506118300370

Mecklenburg JM, Hermann BP. Mechanisms Regulating Spermatogonial Differentiation BT - Molecular Mechanisms of Cell Differentiation in Gonad Development. In: Piprek RP, editor. Cham: Springer International Publishing; 2016. p. 253–87. Available from: https://doi.org/10.1007/978-3- 319-31973-5_10

Wu J, Luo H, Wang H. Chapter Four - Germline Stem Cells. In: Wassarman PMBT-CT in DB, editor. Gametogenesis [Internet]. Academic Press; 2013. p. 97–126. Available from: http://www.sciencedirect.com/science/article/pii/ B9780124160248000040

Manku G, Culty M. Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction. 2015 Mar; 149(3):R139-57.

Ishikura Y, Yabuta Y, Ohta H, Hayashi K, Nakamura T, Okamoto I, et al. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Rep [Internet]. 2016; 17(10):2789–804. Available from: http://www.sciencedirect.com/science/ article/pii/S2211124716315844

Sun R, Qi H. Dynamic expression of combinatorial replication- dependent histone variant genes during mouse spermatogenesis. Gene Expr Patterns [Internet]. 2014; 14(1):30–41. Available from: http://www.sciencedirect. com/science/article/pii/S1567133X1300094X

Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature. 2018 Mar; 555(7696):392–6.

Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, et al. Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development. Cell Stem Cell. 2017 Oct; 21(4):533–546.e6.

Shirakawa T, Yaman-Deveci R, Tomizawa S-I, Kamizato Y, Nakajima K, Sone H, et al. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development. 2013 Sep; 140(17):3565–76.

Hammoud SS, Low DHP, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis. Cell Stem Cell [Internet]. 2014; 15(2):239–53. Available from: http://www.sciencedirect. com/science/article/pii/S193459091400143X

Kubo N, Toh H, Shirane K, Shirakawa T, Kobayashi H, Sato T, et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics. 2015 Aug; 16:624.

Sakashita A, Yeh Y-H V, Namekawa SH, Lin S-P. Epigenomic and single-cell profiling of human spermatogonial stem cells. Stem cell Investig [Internet]. 2018 Apr 24; 5:11. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29782571

Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, et al. The adult human testis transcriptional cell atlas. Cell Res [Internet]. 2018/10/12. 2018 Dec; 28(12):1141–57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30315278

Hammoud SS, Low DHP, Yi C, Lee CL, Oatley JM, Payne CJ, et al. Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev [Internet]. 2015 Nov 1; 29(21):2312–24. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26545815

Hermann BP, Mutoji KN, Velte EK, Ko D, Oatley JM, Geyer CB, et al. Transcriptional and translational heterogeneity among neonatal mouse spermatogonia. Biol Reprod. 2015 Feb; 92(2):54.

Mutoji K, Singh A, Nguyen T, Gildersleeve H, Kaucher A V, Oatley MJ, et al. TSPAN8 Expression Distinguishes Spermatogonial Stem Cells in the Prepubertal Mouse Testis. Biol Reprod [Internet]. 2016/10/12. 2016 Dec; 95(6):117. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/27733379

Liao H-F, Chen WSC, Chen Y-H, Kao T-H, Tseng Y-T, Lee C-Y, et al. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development. 2014 Jun; 141(12):2402–13.

Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells. 2016 Feb; 34(2):277–87.

Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 2004 Jun; 36(6):653–9.

Koubi M, Poplineau M, Vernerey J, N'Guyen L, Tiberi G, Garciaz S, et al. Regulation of the positive transcriptional effect of PLZF through a non-canonical EZH2 activity. Nucleic Acids Res [Internet]. 2018/02/07. 2018 Apr 20; 46(7):3339–50. Available from: https://www.ncbi.nlm.nih. gov/pubmed/29425303

Puszyk W, Down T, Grimwade D, Chomienne C, Oakey RJ, Solomon E, et al. The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J [Internet]. 2013/05/31. 2013 Jul 3; 32(13):1941–52. Available from: https://www.ncbi.nlm. nih.gov/pubmed/23727884

Rossitto M, Philibert P, Poulat F, Boizet-Bonhoure B. Molecular events and signalling pathways of male germ cell differentiation in mouse. Semin Cell Dev Biol [Internet]. 2015; 45:84–93. Available from: http://www.sciencedirect. com/science/article/pii/S1084952115001743

Kimble J. Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol [Internet]. 3(8):a002683–a002683. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21646377

Busada JT, Geyer CB. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation. Biol Reprod [Internet]. 2016 Jan 11; 94(1):10. Available from: http://www.ncbi. nlm.nih.gov/pmc/articles/PMC4809555/

Griswold MD. Spermatogenesis: The Commitment to Meiosis. Physiol Rev [Internet]. 2016; 96(1):1–17. Available from: http://physrev.physiology.org/lookup/doi/10.1152/ physrev.00013.2015

Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci U S A. 2015 May; 112(18):E2347-56.

Suzuki A, Saga Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 2008 Feb; 22(4):430–5.

Zhang T, Zarkower D. DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res. 2017 Oct; 24:195–202.

Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development. 2017 Nov; 144(22):4137–47.

Hasegawa K, Sin H-S, Maezawa S, Broering TJ, Kartashov A V, Alavattam KG, et al. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev Cell. 2015 Mar; 32(5):574–88.

Sin H-S, Kartashov A V, Hasegawa K, Barski A, Namekawa SH. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015 Jul; 13:53.

Maezawa S, Hasegawa K, Yukawa M, Kubo N, Sakashita A, Alavattam KG, et al. Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proc Natl Acad Sci U S A. 2018 May; 115(19):4957–62.

Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res [Internet]. 2017/11/06. 2018 Jan 25; 46(2):593– 608. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29126117

Khalil AM, Wahlestedt C. Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenetics. 2008; 3(1):21–8.

Kota SK, Feil R. Epigenetic Transitions in Germ Cell Development and Meiosis. Dev Cell [Internet]. 2010; 19(5):675–86. Available from: http://www.sciencedirect. com/science/article/pii/S1534580710004624

Zamudio NM, Chong S, O'Bryan MK. Epigenetic regulation in male germ cells. Reproduction. 2008 Aug; 136(2):131–46.

Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol. 2007 Jul; 307(2):368–79.

Gaysinskaya V, Miller BF, De Luca C, van der Heijden GW, Hansen KD, Bortvin A. Transient reduction of DNA methylation at the onset of meiosis in male mice. Epigenetics Chromatin. 2018 Apr; 11(1):15.

Garcia-Fabiani MB, Montanaro MA, Lacunza E, Cattaneo ER, Coleman RA, Pellon-Maison M, et al. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis. Biochem J. 2015 Oct; 471(2):211–20.

Ko Y-G, Yun J, Park HJ, Tanaka S, Shiota K, Cho J-H. Dynamic methylation pattern of the methyltransferase1o (Dnmt1o) 5'-flanking region during mouse oogenesis and spermatogenesis. Mol Reprod Dev. 2013 Mar; 80(3):212–22.

Feng C-WA, Spiller C, Merriner DJ, O'Bryan MK, Bowles J, Koopman P. SOX30 is required for male fertility in mice. Sci Rep [Internet]. 2017 Dec 15; 7(1):17619. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29247201

Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, et al. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development. 2018 May; 145(11).

Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, et al. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development. 2018 Jul; 145(13).

Han F, Dong Y, Liu W, Ma X, Shi R, Chen H, et al. Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One. 2014; 9(5):e97203.

Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R. DNA demethylation and USF regulate the meiosis-specific expression of the mouse Miwi. PLoS Genet. 2012; 8(5):e1002716.

Kato Y, Nozaki M. Distinct DNA methylation dynamics of spermatogenic cell-specific intronless genes is associated with CpG content. PLoS One. 2012; 7(8):e43658.

La Salle S, Trasler JM. Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev Biol [Internet]. 2006; 296(1):71–82. Available from: http://www.sciencedirect.com/science/ article/pii/S0012160606007160

Rivero-Hinojosa S, Kang S, Lobanenkov V V, Zentner GE. Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells. Sci Rep [Internet]. 2017 Feb 1; 7:41279. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/28145452

Zhang P, Torres K, Liu X, Liu C-G, Pollock RE. An Overview of Chromatin-Regulating Proteins in Cells. Curr Protein Pept Sci [Internet]. 2016; 17(5):401–10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26796306

Marino-Ramirez L, Kann MG, Shoemaker BA, Landsman D. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005 Oct; 2(5):719–29.

Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev [Internet]. 2014/11/26. 2015 Mar 25; 115(6):2274–95. Available from: https://www.ncbi. nlm.nih.gov/pubmed/25424540

Petty E, Pillus L. Balancing chromatin remodeling and histone modifications in transcription. Trends Genet [Internet]. 2013/07/16. 2013 Nov; 29(11):621–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23870137

Ishibashi T, Li A, Ausió J. Chapter 289 - Histone Variants: Signaling or Structural Modules? In: Bradshaw RA, Dennis EABT-H of CS (Second E, editors. San Diego: Academic Press; 2010. p. 2409–25. Available from: http://www.sciencedirect. com/science/article/pii/B9780123741455002898

Mariño-Ramí­rez L, Kann MG, Shoemaker BA, Landsman D. Histone structure and nucleosome stability. Expert Rev Proteomics [Internet]. 2005 Oct; 2(5):719–29. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1831843/

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000 Jan; 403(6765):41–5.

Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin [Internet]. 2014; 7(1):2. Available from: https://doi.org/10.1186/1756-8935-7-2

Fenley AT, Anandakrishnan R, Kidane YH, Onufriev A V. Modulation of nucleosomal DNA accessibility via chargealtering post-translational modifications in histone core. Epigenetics Chromatin [Internet]. 2018; 11(1):11. Available from: https://doi.org/10.1186/s13072-018-0181-5

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res [Internet]. 2011/02/15. 2011 Mar; 21(3):381–95. Available from: https://www. ncbi.nlm.nih.gov/pubmed/21321607

Kurimoto K, Saitou M. Epigenome regulation during germ cell specification and development from pluripotent stem cells. Curr Opin Genet Dev. 2018 Jun; 52:57–64.

Sun Y-C, Wang Y-Y, Ge W, Cheng S-F, Dyce PW, Shen W. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget [Internet]. 2017 Jun 12; 8(34):57836–44. Available from: https://www.ncbi.nlm. nih.gov/pubmed/28915715

Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008 Apr; 452(7189):877–81.

Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002 Sep; 117(1–2):15–23.

Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007 Jul; 134(14):2627–38.

Dolci S, Campolo F, De Felici M. Gonadal development and germ cell tumors in mouse and humans. Semin Cell Dev Biol. 2015 Sep; 45:114–23.

Li Z, Yu J, Hosohama L, Nee K, Gkountela S, Chaudhari S, et al. The Sm protein methyltransferase PRMT5 is not required for primordial germ cell specification in mice. EMBO J. 2015 Mar; 34(6):748–58.

Wang Y, Zhu T, Li Q, Liu C, Han F, Chen M, et al. Prmt5 is required for germ cell survival during spermatogenesis in mice. Sci Rep [Internet]. 2015 Jun 15; 5:11031. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26072710

Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol [Internet]. 2006 May 14; 8:623. Available from: https://doi.org/10.1038/ncb1413

Eckert D, Biermann K, Nettersheim D, Gillis AJM, Steger K, Jack H-M, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol. 2008 Nov; 8:106.

Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S, et al. PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell. 2014 Nov; 56(4):564–79.

Vagin V V, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 2009 Aug; 23(15):1749–62.

Bordlein A, Scherthan H, Nelkenbrecher C, Molter T, Bosl MR, Dippold C, et al. SPOC1 (PHF13) is required for spermatogonial stem cell differentiation and sustained spermatogenesis. J Cell Sci. 2011 Sep; 124(Pt 18):3137–48.

Chung H-R, Xu C, Fuchs A, Mund A, Lange M, Staege H, et al. PHF13 is a molecular reader and transcriptional coregulator of H3K4me2/3. Elife. 2016 May; 5.

Kim JS, Chae JH, Cheon Y-P, Kim CG. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis. Acta Histochem. 2016 Sep; 118(7):685–92.

Murphy MW, Sarver AL, Rice D, Hatzi K, Ye K, Melnick A, et al. Genome-wide analysis of DNA binding and transcriptional regulation by the mammalian Doublesex homolog DMRT1 in the juvenile testis. Proc Natl Acad Sci U S A. 2010 Jul; 107(30):13360–5.

Bhanu N V, Sidoli S, Garcia BA. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation. Proteomics [Internet]. 2016/01/28. 2016 Feb; 16(3):448–58. Available from: https://www.ncbi.nlm.nih. gov/pubmed/26631989

Liu Y, Giannopoulou EG, Wen D, Falciatori I, Elemento O, Allis CD, et al. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells. Nat Commun [Internet]. 2016 Apr 27; 7:11275. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27117588

Turner JMA. Meiotic sex chromosome inactivation. Development. 2007 May; 134(10):1823–31.

Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, et al. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin [Internet]. 2017; 10(1):11. Available from: https://doi.org/10.1186/s13072- 017-0119-3

Baumann C, Schmidtmann A, Muegge K, De La Fuente R. Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol Biol [Internet]. 2008 Mar 13; 9:29. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18366812

Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, et al. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci. 2018 Sep; 131(17).

Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell. 2003 Apr; 4(4):497–508.

Namekawa SH, Park PJ, Zhang L-F, Shima JE, McCarrey JR, Griswold MD, et al. Postmeiotic Sex Chromatin in the Male Germline of Mice. Curr Biol [Internet]. 2006; 16(7):660–7. Available from: http://www.sciencedirect. com/science/article/pii/S0960982206012784

Hoyer-Fender S. Molecular aspects of XY body formation. Cytogenet Genome Res. 2003; 103(3–4):245–55.

Royo H, Seitz H, ElInati E, Peters AHFM, Stadler MB, Turner JMA. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation. PLoS Genet. 2015 Oct; 11(10):e1005461.

Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol. 2010 Dec; 20(23):2117–23.

Ichijima Y, Sin H-S, Namekawa SH. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci. 2012 Aug; 69(15):2559–72.

Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM, Baumann M, et al. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev. 2013 Jul; 27(13):1484–94.

ElInati E, Russell HR, Ojarikre OA, Sangrithi M, Hirota T, de Rooij DG, et al. DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A. 2017 Nov; 114(47):12536–41.

Broering TJ, Alavattam KG, Sadreyev RI, Ichijima Y, Kato Y, Hasegawa K, et al. BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. J Cell Biol [Internet]. 2014 Jun 9; 205(5):663–75. Available from: https://www.ncbi.nlm. nih.gov/pubmed/24914237

Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Camerini- Otero RD, Chen J, et al. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev. 2011 May; 25(9):959–71.

Jiang H, Gao Q, Zheng W, Yin S, Wang L, Zhong L, et al. MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genet. 2018 May; 14(5):e1007300.

Manterola M, Brown TM, Oh MY, Garyn C, Gonzalez BJ, Wolgemuth DJ. BRDT is an essential epigenetic regulator for proper chromatin organization, silencing of sex chromosomes and crossover formation in male meiosis. PLoS Genet. 2018 Mar; 14(3):e1007209.

Kato Y, Alavattam KG, Sin H-S, Meetei AR, Pang Q, Andreassen PR, et al. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet. 2015 Sep; 24(18):5234–49.

Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, et al. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell. 2018 Dec; 47(5):645–659.e6.

Sheng K, Liang X, Huang S, Xu W. The role of histone ubiquitination during spermatogenesis. Biomed Res Int [Internet]. 2014/05/19. 2014; 2014:870695. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24963488

Richburg JH, Myers JL, Bratton SB. The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Semin Cell Dev Biol. 2014 Jun; 30:27–35.

Guo Y, Song Y, Guo Z, Hu M, Liu B, Duan H, et al. Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle. 2018; 17(2):162–73.

An JY, Kim E-A, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, et al. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci U S A [Internet]. 2010/01/11. 2010 Feb 2; 107(5):1912–7. Available from: https://www.ncbi.nlm. nih.gov/pubmed/20080676

Wang L, Cao C, Wang F, Zhao J, Li W. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis. Nucleus [Internet]. 2017 Jun 19; 8(5):461–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28628358

Sin H-S, Barski A, Zhang F, Kartashov A V, Nussenzweig A, Chen J, et al. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev. 2012 Dec; 26(24):2737–48.

Alavattam KG, Kato Y, Sin H-S, Maezawa S, Kowalski IJ, Zhang F, et al. Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Rep. 2016 Oct; 17(4):1141–57.

Luo M, Zhou J, Leu NA, Abreu CM, Wang J, Anguera MC, et al. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet. 2015 Jan; 11(1):e1004954.

Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, et al. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. Adams IR, editor. PLoS Genet [Internet]. 2018 Feb 20; 14(2):e1007233. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5834201/

Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ. The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis. Mol Cell Biol. 2006 Jul; 26(14):5394–405.

Ryan DP, Tremethick DJ. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin. Nucleic Acids Res [Internet]. 2018/07/11. 2018 Oct 12; 46(18):9353– 66. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/30007360

Zhuang X-J, Tang W-H, Feng X, Liu C-Y, Zhu J-L, Yan J, et al. Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis. Cell Cycle [Internet]. 2016 Sep 9; 15(19):2576–84. Available from: https://www. ncbi.nlm.nih.gov/pubmed/27612028

Hu J, Sun F, Handel MA. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018 Jan; 98(1):102–14.

Jamin SP, Petit FG, Kervarrec C, Smagulova F, Illner D, Scherthan H, et al. EXOSC10/Rrp6 is post-translationally regulated in male germ cells and controls the onset of spermatogenesis. Sci Rep [Internet]. 2017 Nov 8; 7(1):15065. Available from: https://www.ncbi.nlm.nih. gov/pubmed/29118343

Moretti C, Vaiman D, Tores F, Cocquet J. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Epigenetics Chromatin. 2016; 9:47.

Reynard LN, Turner JMA. Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions. J Cell Sci. 2009 Nov; 122(Pt 22):4239–48.

Moretti C, Serrentino M-E, Ialy-Radio C, Delessard M, Soboleva TA, Tores F, et al. SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ. 2017 Jun; 24(6):1029–44.

Riel JM, Yamauchi Y, Sugawara A, Li HYJ, Ruthig V, Stoytcheva Z, et al. Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging. J Cell Sci. 2013 Feb; 126(Pt 3):803–13.

Cocquet J, Ellis PJI, Yamauchi Y, Mahadevaiah SK, Affara NA, Ward MA, et al. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol. 2009 Nov; 7(11):e1000244.

Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol. 2015 Jan; 208(1):53–69.

Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017 Apr; 63(2):69–76.

Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember" . Biol Reprod [Internet]. 2017; 97(6):784–97. Available from: http://dx.doi.org/10.1093/biolre/iox137

Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014 Mar; 1839(3):155–68.

Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, et al. Comprehensive analysis of histone posttranslational modifications in mouse and human male germ cells. Epigenetics Chromatin. 2016; 9:24.

Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, et al. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nat Commun. 2018 Sep; 9(1):3885.

Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, et al. Re-evaluating the Localization of Sperm- Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep. 2018 Jun; 23(13):3920–32.

Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod. 2011 Feb; 84(2):218–28.

Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma [Internet]. 2013/06/01. 2013 Aug; 122(4):319–35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23729169

Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet [Internet]. 2014 May 8; 10(5):e1004317–e1004317. Available from: https:// www.ncbi.nlm.nih.gov/pubmed/24810616

Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites. Sci Rep. 2018 Mar; 8(1):5308.

Hamad MF, Shelko N, Kartarius S, Montenarh M, Hammadeh ME. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology. 2014 Sep; 2(5):666–77.

Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, et al. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril. 2014 Jan; 101(1):51–57.e1.

Schagdarsurengin U, Steger K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol. 2016 Oct; 13(10):584–95.

Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016 Jan; 31(1):24–33.

Rahiminia T, Yazd EF, Fesahat F, Moein MR, Mirjalili AM, Talebi AR. Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia. Clin Exp Reprod Med. 2018 Mar; 45(1):17–24.

Dehghanpour F, Tabibnejad N, Fesahat F, Yazdinejad F, Talebi AR. Evaluation of sperm protamine deficiency and apoptosis in infertile men with idiopathic teratozoospermia. Clin Exp Reprod Med. 2017 Jun; 44(2):73–8.

Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E, Klukovich R, et al. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ epigenetics. 2018 Apr; 4(2):dvy010.

Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin [Internet]. 2018; 11(1):8. Available from: https://doi.org/10.1186/ s13072-018-0178-0

Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod. 2017 Dec; 32(12):2443–55.

Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017 Apr; 18(1):280.

Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update [Internet]. 2018; 24(5):535–55. Available from: http://dx.doi. org/10.1093/humupd/dmy017

Ge S, Zhao P, Liu X, Zhao Z, Liu M. Necessity to Evaluate Epigenetic Quality of the Sperm for Assisted Reproductive Technology. Reprod Sci. 2018 Nov; 1933719118808907.

Chan D, Delbes G, Landry M, Robaire B, Trasler JM. Epigenetic alterations in sperm DNA associated with testicular cancer treatment. Toxicol Sci. 2012 Feb; 125(2):532–43.

Markulin D, Vojta A, Samarzija I, Gamulin M, Beceheli I, Jukic I, et al. Association Between RASSF1A Promoter Methylation and Testicular Germ Cell Tumor: A Meta-analysis and a Cohort Study. Cancer Genomics Proteomics. 2017; 14(5):363–72.

Almabhouh FA, Singh HJ. Adverse effects of leptin on histone-to-protamine transition during spermatogenesis are prevented by melatonin in Sprague-Dawley rats. Andrologia. 2018 Feb; 50(1).

Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, et al. A Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell RNA-Seq. Dev Cell. 2018 Sep; 46(5):651–667.e10.

Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 2018 Sep; 28(9):879–96.

Goudarzi A, Shiota H, Rousseaux S, Khochbin S. Genomescale acetylation-dependent histone eviction during spermatogenesis. J Mol Biol. 2014 Oct; 426(20):3342–9.

Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, et al. Chromodomain Protein CDYL Acts as a Crotonyl- CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis. Mol Cell. 2017 Sep; 67(5):853–866.e5.

An J, Zhang X, Qin J, Wan Y, Hu Y, Liu T, et al. The histone methyltransferase ESET is required for the survival of spermatogonial stem/progenitor cells in mice. Cell Death Dis. 2014 Apr; 5:e1196.

Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The Histone Demethylase FBXL10 Regulates the Proliferation of Spermatogonia and Ensures Long-Term Sustainable Spermatogenesis in Mice. Biol Reprod. 2016 Apr; 94(4):92.

Di Giacomo M, Comazzetto S, Sampath SC, Sampath SC, O'Carroll D. G9a co-suppresses LINE1 elements in spermatogonia. Epigenetics Chromatin [Internet]. 2014 Sep 11; 7:24. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/25276231

Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem [Internet]. 2009/11/12. 2010 Jan 22; 285(4):2758–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19910458

Nakajima R, Okano H, Noce T. JMJD1C Exhibits Multiple Functions in Epigenetic Regulation during Spermatogenesis. PLoS One. 2016; 11(9):e0163466.

Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, et al. JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod. 2013 Oct; 89(4):93.

Lambrot R, Lafleur C, Kimmins S. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors. FASEB J Off Publ Fed Am Soc Exp Biol. 2015 Nov; 29(11):4402–16.

Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007 Nov; 450(7166):119–23.

Okada Y, Tateishi K, Zhang Y. Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl. 2010; 31(1):75–8.

Iwamori N, Zhao M, Meistrich ML, Matzuk MM. The testis-enriched histone demethylase, KDM4D, regulates methylation of histone H3 lysine 9 during spermatogenesis in the mouse but is dispensable for fertility. Biol Reprod [Internet]. 2011/02/03. 2011 Jun; 84(6):1225–34. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21293030

Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017 Jan; 45(1):169–80.

Zoabi M, Nadar-Ponniah PT, Khoury-Haddad H, Usaj M, Budowski-Tal I, Haran T, et al. RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation. Nucleic Acids Res. 2014 Dec; 42(21):13026–38.

Khoury-Haddad H, Nadar-Ponniah PT, Awwad S, Ayoub N. The emerging role of lysine demethylases in DNA damage response: dissecting the recruitment mode of KDM4D/JMJD2D to DNA damage sites. Cell Cycle. 2015; 14(7):950–8.

Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin [Internet]. 2009; 2(1):5. Available from: https://doi.org/10.1186/1756-8935-2-5

Shi B, Xue J, Zhou J, Kasowitz SD, Zhang Y, Liang G, et al. MORC2B is essential for meiotic progression and fertility. PLoS Genet [Internet]. 2018 Jan 12; 14(1):e1007175– e1007175. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29329290

Hayashi K, Matsui Y. Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis. Cell Cycle. 2006 Mar; 5(6):615–20.

Thibault-Sennett S, Yu Q, Smagulova F, Cloutier J, Brick K, Camerini-Otero RD, et al. Interrogating the Functions of PRDM9 Domains in Meiosis. Genetics [Internet]. 2018/04/19. 2018 Jun; 209(2):475–87. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29674518

Lu L-Y, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell. 2010 Mar; 18(3):371–84.

Liu T, Chen X, Li T, Li X, Lyu Y, Fan X, et al. Histone methyltransferase SETDB1 maintains survival of mouse spermatogonial stem/progenitor cells via PTEN/AKT/ FOXO1 pathway. Biochim Biophys acta Gene Regul Mech. 2017 Oct; 1860(10):1094–102.