Bidirectional Communication between Gut Microbiome and Polycystic Ovary Syndrome: Implications on Associated Metabolic Comorbidities

Jump To References Section

Authors

  • Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur ? 603203, Tamil Nadu ,IN
  • Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur ? 603203, Tamil Nadu ,IN
  • Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur ? 603203, Tamil Nadu ,IN
  • Endocrine Disruption and Reproductive Toxicology (EDART) Laboratory, SRM Institute of Science and Technology, Kattankulathur ? 603203, Tamil Nadu ,IN
  • PG & Research Department of Advanced Zoology and Biotechnology, Government Arts College for Men, Nandanam, Chennai ? 600035, Tamil Nadu ,IN
  • Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur ? 603203, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jer/2021/28981

Keywords:

Endocrine Disrupting Chemicals, Gut Microbiome, Metabolic Comorbidities, Polycystic Ovary Syndrome

Abstract

Objective: Polycystic Ovary Syndrome (PCOS) is a neuroendocrine and metabolic disorder with multifaceted etiology, prevailing in women who are of reproductive age, rendering dwindling conception rates and escalating infertility rates worldwide. The etiology of PCOS is unresolved, potentially caused due to a mixture of genetic and environmental factors supported by components of diet and lifestyle manifested in women as an endocrine and metabolic disorder. Recent advancements have however thrown light on the influence of the gut-brain axis and the Gut Micro-Biome (GMB) on various body functions. Endocrine, immune and metabolic dysfunctions, portrayed by abnormal steroidogenesis and gut-induced inflammation, influenced by dysbiosis of the gut, provides a plausible role to the gut microbiome in the pathophysiology of PCOS. Endocrine Disrupting Chemicals (EDCs) mimic endogenous hormones and interfere with homeostasis. EDCs can have a significant impact on the health of women, in particular with PCOS, owing to its increasing link with estrogen, testosterone, and weight gain and glucose metabolism. Methods: A thorough search was conducted onelectronic databases. Relevant literature, obtained through the search, were studied and summarized to address the effects of EDCs on the gutmicrobiome and PCOS and the associated metabolic comorbidities. Conclusion: GMB is associated with various metabolic disorders inching towards comprehensive development of metabolic syndromes, thereby increasing risks of developing chronic obesity, infertility, Type 2 diabetes mellitus, cardiovascular disorders, and gynaecological cancers. Influence of EDCs on the gut-brain axis and there by the pathophysiology of PCOS, and the bifacial alliance between GMB and PCOS involving endocrine, immune and metabolic mechanisms open up a novel avenue in managing the effect of EDCs in PCOS women worldwide.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-01-13

How to Cite

Sanjana, A., Sanjana, K., Poornima, A., Barathi, S., Santosh, W., & Vasantharekha, R. (2022). Bidirectional Communication between Gut Microbiome and Polycystic Ovary Syndrome: Implications on Associated Metabolic Comorbidities. Journal of Endocrinology and Reproduction, 25(2), 97–109. https://doi.org/10.18311/jer/2021/28981

Issue

Section

Review Article

 

References

Zawadzki JK, Dunaif A. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rational Approach. In: Dunaif A, Givens JR, Haseltine F, Eds. Polycystic Ovary Syndrome. Blackwell Scientific, Boston; 1992. p. 377-384.

Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to Poly=Cystic Ovary Syndrome (PCOS). Hum Reprod. 2004; 19(1):41-47. https://doi.org/10.1093/humrep/deh098. PMid:14688154.

Luque-Ramírez M, Escobar-Morreale HF. Polycystic ovary syndrome as a paradigm for prehypertension, prediabetes, and preobesity. Curr Hypertens Rep. 2014; 16(12):500. https://doi.org/10.1007/s11906-014-0500-6. PMid:25304109.

Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell. 2018; 33(6):954-964. https://doi.org/10.1016/j.ccell.2018.03.004. PMid:29657127.

Ogino S, Nowak JA, Hamada T, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018; 67(6):1168-1180. https://doi.org/10.1136/gutjnl-2017-315537 PMid:29437869 PM Cid:PMC5943183.

Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009; 98(2):229- 238. https://doi.org/10.1111/j.1651-2227.2008.01060.x. PMid:19143664.

Bäckhed F, Ley RE, Sonnenburg JL, et al. Hostbacterial mutualism in the human intestine. Science. 2005; 307(5717):1915-1920. https://doi.org/10.1126/science.1104816. PMid:15790844.

Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011; 331(6015):337-341. https://doi.org/10.1126/science.1198469. PMid:21205640 PMCid:PMC3969237.

Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009; 89(1):147-191. https://doi.org/10.1152/physrev.00010.2008. PMid:19126757.

Wong JMW, De Souza R, Kendall CWC, et al. Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol. 2006; 40(3):235-243. https://doi.org/10.1097/00004836-200603000-00015. PMid:16633129.

Pasquali R, Casimirri F. The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol. 1993; 39:1- 16. https://doi.org/10.1111/j.1365-2265.1993.tb01744.x. PMid:8348699.

Kelley ST, Skarra DV., Rivera AJ, Thackray VG. The gut microbiome is altered in a Letrozole-Induced mouse model of polycystic ovary syndrome. PLoS One. 2016; 11(1):e0146509. https://doi.org/10.1371/journal.pone. 0146509. PMid:26731268 PMCid: PMC4701222.

Apau J, Acheampong A, Adua E. Exposure to bisphenol A, bisphenol F, and bisphenol S can result in obesity in human body. Cogent Chem. 2018; 4(1):1506601. https://doi.org/10.1080/23312009.2018.1506601.

Xie X, Lu C, Wu M, et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014). Environ Int. 2020; 136:105445. https://doi.org/10.1016/j.envint.2019.105445. PMid:31918332 PMCid: PMC7027658.

Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, et al. Unhealthy levels of phthalates and bisphenol a in mexican pregnant women with gestational diabetes and its association to altered expression of miRNAs involved with metabolic disease. Int J Mol Sci. 2019; 20(13):33-43. https://doi.org/10.3390/ijms20133343. PMid:31284700 PMCid: PMC6650872.

Hu J, Raikhel V, Gopalakrishnan K, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 2016; 4(1):26. https://doi.org/10.1186/s40168-016-0173-2. PMid: 27301250 PMCid:PMC4906585.

Raja GL, Subhashree KD, Santosh W, et al. Transient exposure of methylparaben to zebrafish (Danio rerio) embryos altered cortisol level, acetylcholinesterase activity and induced anxiety-like behaviour. Gen Comp Endocrinol. 2019; 279:53-59. https://doi.org/10.1016/j.ygcen.2018.11.001. PMid:30395803.

Shekhar S, Sood S, Showkat S, et al. Detection of phenolic Endocrine Disrupting Chemicals (EDCs) from maternal blood plasma and amniotic fluid in Indian population. Gen Comp Endocrinol. 2017; 241:100-107. https://doi.org/10.1016/j.ygcen.2016.05.025. PMid:27235644.

Raja GL, Lite C, Subhashree KD, Santosh W, Barathi S. Prenatal bisphenol-A exposure altered exploratory and anxiety-like behaviour and induced non-monotonic, sexspecific changes in the cortical expression of CYP19A1, BDNF and intracellular signaling proteins in F1 rats. Food Chem Toxicol. 2020; 142:111442. https://doi.org/10.1016/j. fct.2020.111442. PMid:32450286.

Dogan S, Simsek T. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers. Med Hypotheses. 2016; 92:84-87. https://doi.org/10.1016/j.mehy.2016.04.041. PMid:27241264.

Palioura E, Diamanti-Kandarakis E. Poly-Cystic Ovary Syndrome (PCOS) and Endocrine Disrupting Chemicals (EDCs). Rev Endocr Metab Disord. 2015; 16(4):365- 371. https://doi.org/10.1007/s11154-016-9326-7. PMid: 26825073.

Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009; 6(5):306-314. https://doi.org/10.1038/nrgastro.2009.35. PMid:19404271 PMCid:PMC3817714.

Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002; 53(4):865-871. https://doi.org/10.1016/S0022-3999(02)00429-4.

Coutinho EA, Kauffman AS. The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Med Sci (Basel). 2019; 7(8):84. https://doi.org/10.3390/medsci7080084. PMid:31382541 PMCid:PMC6722593.

Barbara G, Stanghellini V, De Giorgio R, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005; 100(11):2560-2568. https://doi.org/10.1111/j.1572-0241.2005.00230.x. PMid:16279914.

Clarke G, Grenham S, Scully P et al. The microbiomegut- brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18:666-673. https://doi.org/10.1038/ mp.2012.77. PMid:22688187.

González F. Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction. Steroids 2012; 77(4):300-305. https://doi. org/10.1016/j.steroids.2011.12.003. PMid:22178787 PM Cid:PMC3309040.

Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012; 303(11):G1288-G1295. https://doi.org/10.1152/ajpgi.00341.2012. PMid:23064760.

Tungland B. Human Microbiota in Health and Disease: From Pathogenesis to Therapy. 2018.. London: Academic Press, Elsevier. https://doi.org/10.1016/C2017-0-01893-1.

Markowiak P, ?lizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017; 9(9):1021. https://doi.org/10.3390/nu9091021 PMid:28914794 PMC id:PMC5622781.

Saydam BO, Yildiz BO. Gut-Brain Axis and Metabolism in Polycystic Ovary Syndrome. Curr Pharm Des. 2016; 22(36):5572-5587. https://doi.org/10.2174/1381612822666160715143933. PMid:27426125.

Gálvez-Ontiveros Y, Páez S, Rivas A et al. Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients. 2020; 12(4):1158. https://doi.org/10.3390/nu12041158. PMid:32326280 PMCid: PMC7231259.

Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol. 2017; 7:396. https://doi.org/10.3389/fcimb.2017.00396. PMid:28936425 PMCid:PMC5596107.

Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016; 2:16003. https://doi.org/10.1038/npjbiofilms.2016.3. PMid:28721242 PMCid: PMC5515271.

Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekol. 2015; 80(4):279-289.

Baptiste CG, Battista MC, Baillargeon JP, et al. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010; 122(1-3):42- 52. https://doi.org/10.1016/j.jsbmb.2009.12.010. PMid: 20036327 PMCid:PMC3846536.

Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019 Oct 1; 129(10):4050-4057. https://doi.org/10.1172/JCI129194. PMid:31573550 PMCid:PMC6763239.

Gore AC, Chappell VA, Zoeller RT et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015; 36(6):E1-E150. https://doi.org/10.1210/er.2015-1010. PMid:26544531 PMCid:PMC4702494.

Lu K, Abo RP, Schlieper KA, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014; 122(3):284-291. https://doi.org/10.1289/ehp.1307429. PMid:24413286 PM Cid:PMC3948040.

Gambineri A, Pelusi C, Pasquali R et al. Obesity and the Polycystic Ovary Syndrome. Int J Obes Relat Metab Disord. 2002; 26(7):883-896. https://doi.org/10.1038/sj.ijo.0801994. PMid:12080440.

Poretsky L, Cataldo NA, Giudice LC et al. The insulinrelated ovarian regulatory system in health and disease. Endocr Rev. 1999; 20(4):535-582. https://doi.org/10.1210/edrv.20.4.0374. PMid:10453357.

Garzo VG, Dorrington JH. Aromatase activity in human granulosa cells during follicular development and the modulation by follicle-stimulating hormone and insulin. Am J Obstet Gynecol. 1984; 148(5):657-662. https://doi.org/10.1016/0002-9378(84)90769-5.

Hautanen A. Synthesis and regulation of sex hormonebinding globulin in obesity. Int J Obes Relat Metab Disord. 2000; 24 Suppl 2:S64-70. https://doi.org/10.1038/sj.ijo.0801281. PMid:10997612.

Pasquali R, Vicennati V. The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitary-adrenal axis in humans. Horm Metab Res. 2000; 32(11-12):521-525. https://doi.org/10.1055/s-2007-978680. PMid:11246819.

Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013; 5(4):1218-1240. https://doi.org/10.3390/nu5041218. PMid: 23584084 PMCid:PMC3705344.

Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014; 588(22):4223-4233. https://doi.org/10.1016/j.febslet.2014.09.039. PMid:25307765 PMCid:PMC5050012.

Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7):1761-1772. https://doi.org/10.2337/db06-1491. PM id:17456850.

Lubrano C, Genovesi G, Gnessi L. Obesity and metabolic comorbidities: environmental diseases? Oxid Med Cell Longev. 2013; 2013:640673. https://doi.org/10.1155/2013/640673. PMid:23577225 PMCid:PMC 3613100.

Fan Y, Qin Y, Chen M, et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. J Hazard Mater. 2020; 385:121534. https://doi.org/10.1016/j.jhazmat.2019.121534. PMid:31706747 PMCid:PMC7220048.

Liang Y, Zhan J, Liu D, et al. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019; 7(1):19. https://doi.org/10.1186/s40168-019-0635-4. PMid:30744700 PMCid:PMC6371608.

Liu Q, Shao W, Zhang C, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ Pollut. 2017; 226:268-276. https://doi.org/10.1016/j.envpol.2017.03.068. PMid:2839 2238.

Turnbaugh P, Ley R, Mahowald M, et al. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature 2006; 444:1027-1031. https://doi.org/10.1038/nature05414. PMid:17183312.

González F, Rote NS, Minium J, Kirwan JP. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab. 2006; 91(1):336- 340. https://doi.org/10.1210/jc.2005-1696. PMid:16249279.

Kinyua AW, Doan KV, Yang DJ, et al. Insulin Regulates Adrenal Steroidogenesis by Stabilizing SF-1 Activity. Sci Rep. 2018; 8(1):5025. https://doi.org/10.1038/s41598-018- 23298-2. PMid:29567944 PMCid:PMC5864882.

Longnecker MP, Daniels JL. Environmental contaminants as etiologic factors for diabetes Environ Health Perspect. 2001; 109 Suppl 6(Suppl 6):871-876. https://doi.org/10.1289/ehp.01109s6871. PMid:11744505 PMCid:PMC1240622.

Yang O, Kim HL, Seo YR et al. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis. J Cancer Prev. 2015; 20(1):12-24. https://doi.org/10.15430/JCP.2015.20.1.12. PMid:25853100 PMCid:PMC4384711.

Petriello MC, Hoffman JB, Vsevolozhskaya O, et al. Dioxinlike PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut. 2018; 242(Pt A):1022-1032. https://doi.org/10.1016/j.envpol.2018.07.039. PMid:30373033 PMCid:PMC6211811.

Berni TR, Morgan CL, Rees DA. Women With Polycystic Ovary Syndrome Have an Increased Risk of Major Cardiovascular Events: a Population Study. J Clin Endocrinol Metab. 2021; 106(9):e3369-e3380. https://doi.org/10.1210/clinem/dgab392. PMid:34061968 PMCid: PMC8372630.

Kazemian N, Mahmoudi M, Halperin F, et al. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 2020; 8:36. https://doi.org/10.1186/s40168-020-00821-0. PMid:32169105 PMCid:PMC7071638.

Jorge-Galarza E, Posadas-Romero C, Rojas JG et al. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification. Dis Markers. 2016; 2016:9085474. https://doi.org/10.1155/2016/9085474. PMid:28127113 PMCid:PMC5227149.

Jena D, Choudhury AK, Mangaraj S, et al. Study of visceral and subcutaneous abdominal fat thickness and its correlation with cardiometabolic risk factors and hormonal parameters in polycystic ovary syndrome. Indian J Endocrinol Metab. 2018;22(3):321-327. https://doi.org/10.4103/ijem.IJEM_646_17. PMid:30090722 PMCid: PMC6063187.

Matey-Hernandez ML, Williams FMK, Potter T, et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics. 2018; 50(2):117- 126. https://doi.org/10.1152/physiolgenomics.00053.2017. PMid:29341867 PMCid: PMC5867613.

Mahmoud SA, Zhang L, Zang H, et al. Adverse long-term metabolic and endometrial consequences in women with polycystic ovarian syndrome: A report of two cases. Reprod Med. 2016; 61(5-6):302-305. PMID: 27424378.

Hardiman P, Pillay OS, Atiomo W. Polycystic ovary syndrome and endometrial carcinoma. Lancet. 2003; 361(9371):1810-1812. https://doi.org/10.1016/S0140-6736(03)13409-5.

Fearnley EJ, Marquart L, Webb PM, et al. Polycystic ovary syndrome increases the risk of endometrial cancer in women aged less than 50 years: An Australian case-control study. Cancer Causes Control. 2010; 21(12):2303-2308. https://doi.org/10.1007/s10552-010-9658-7. PMid:20953904.

Walther-António MRS, Chen J, Multinu F, et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016; 8(1):122. https://doi.org/10.1186/s13073-016-0368-y. PMid:27884207 PM Cid:PMC5123330.

Sherman SB, Sarsour N, Joe B, et al. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes. 2018; 9(5):400-421. https://doi.org/10.1080/19490976.2018.1441664. PMid:29469650 PM Cid:PMC6219642.

Crews D, McLachlan JA. Epigenetics, evolution, endocrine disruption, health, and disease Endocrinology 2006; 147(6 Suppl):S4-10. https://doi.org/10.1210/en.2005-1122. PMid:16690812.

Ma R, Sassoon DA. PCBs exert an estrogenic effect through repression of the Wnt7a signaling pathway in the female reproductive tract. Environ Health Perspect. 2006; 114(6):898-904. https://doi.org/10.1289/ehp.8748. PMid:16759992 PMCid:PMC1480489.

Hiroi H, Tsutsumi O, Takeuchi T, et al. Differences in serum bisphenol A concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr J. 2004; 51(6):595-600. https://doi.org/10.1507/endocrj.51.595. PMid:15644579.

Racho? D, Vortherms T, Seidlovä-Wuttke D, et al. Effects of dietary equol on the pituitary of the ovariectomized rats. Horm Metab Res. 2007; 39(4):256-261. https://doi.org/10.1055/s-2007-973074. PMid:17447162.

Unfer V, Casini ML, Di Renzo GC, et al. Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril. 2004; 82(1):145-8. https://doi.org/10.1016/j.fertnstert.2003.11.041. PMid:15237003.

Park SH, Kim KY, An BS, et al. Cell growth of ovarian cancer cells is stimulated by xenoestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinases ERK-1 and p38. J Reprod Dev. 2009; 55(1):23-9. https://doi.org/10.1262/jrd.20094 PMid:18854640.

Park MA, Hwang KA, Lee HR, et al. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models. Toxicology 2013; 305:41-8. https://doi.org/10.1016/j.tox.2012.12.021. PMid:23328252.