Epigenetic Regulation of Tamoxifen-Resistant Breast Cancer: An Update

Jump To References Section

Authors

  • Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu ,IN
  • Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu ,IN
  • Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu ,IN

DOI:

https://doi.org/10.18311/jer/2022/31013

Keywords:

Breast Cancer, Cancer Epigenetics, Cancer Stem Cells, Multidrug Resistance, Tamoxifen Resistance
Tamoxifen resistance, epigenetic regulation

Abstract

Breast cancer is the most common cause of death in women around the world. Epigenetic changes modulate transcriptional activity in several diseases, including cancer. Cancer epigenetics explains gene expression changes without DNA mutations. Aberrant DNA methylation, histone modifications, and mRNA expression promote tumоr growth and metastasis. In cancer cells, chemo-resistance occurs via Multidrug Resistance (MDR), apoptotic suppression, DNA damage response, epigenetic alterations, and competitive endogenous RNA. Owing to drug resistance, quiescence, and varied cancer cell production, Cancer Stem Cells (CSCs) are critical to tumоr formation, metastasis, and recurrence after therapy. In addition, MDR promotes drug efflux, enhanced secretion of growth factors, and DNA modifications in cancer patients, thereby causing fatalities in cancer patients. Heterogeneity and epigenetic plasticity cause drug resistance due to various factors. However, the molecular mechanism of epigenetic drug resistance is still unravelled completely. Overexpressed c-MYC leads to cancer and tamoxifen resistance. Despite the molecular underpinning of cancer development, drug resistance is continued in a myriad number of cases. Epigenetic changes affect CSCs viability and tumоr aggressiveness. These processes can be blocked by medicines. Tamoxifen is used widely for breast cancer treatment; however, latent treatments have emerged as a tamoxifen-resistant phenotype. Epigenetic modifications cause resistance by upregulating and altering the tumоr microenvironment and deregulating the immune response. The knowledge of epigenetic pathways in clinical treatment resistance may enhance the outcome of cancer patients. Multifactorial heterogeneous resistance is common in many targeted therapies. Many resistance mechanisms to targeted therapy may converge, including route reactivation. This review summarizes the epigenetic alterations, MDR, and development of tamoxifen resistance in breast cancer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-10

How to Cite

Chhetri, D., Gnanasampanthapandian, D., & Palaniyandi, K. (2023). Epigenetic Regulation of Tamoxifen-Resistant Breast Cancer: An Update. Journal of Endocrinology and Reproduction, 26(4), 221–237. https://doi.org/10.18311/jer/2022/31013

Issue

Section

Review Article

 

References

Hackshaw A, Roughton M, Forsyth S, et al. Long-term benefits of 5 years of tamoxifen: 10-year follow-up of a large randomized trial in women at least 50 years of age with early breast cancer. J Clin Oncol. 2011; 29(13):1657-63. https://doi.org/10.1200/ JCO.2010.32.2933 PMID:21422412

Chlebowski RT, Aragaki AK, Pan K. Breast cancer prevention: Time for change. JCO Oncology Practice. 2021; 17(12):709-16. https://doi.org/10.1200/OP.21.00343 PMID:34319769 PMCID:PMC8677965

Yao J, Deng K, Huang J, et al. Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer. Front Pharmacol. 2020; 11:592912. https://doi.org/10.3389/fphar.2020.592912 PMID:33362547 PMCID:PMC7758911

Ali S, Rasool M, Chaoudhry H, et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016; 12(3):135-9. https://doi.org/10.6026/97320630012135 PMID:28149048 PMCID:PMC5267957

Day CM, Hickey SM, Song Y, et al. Novel tamoxifen nanoformulations for improving breast cancer treatment: Old wine in new bottles. Molecules. 2020; 25(5). https://doi.org/10.3390/molecules25051182 PMID:32151063 PMCID:PMC7179425

Bebchuk JM, Arfken CL, Dolan-Manji S, et al. A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry. 2000; 57(1):95-7. https://doi.org/10.1001/archpsyc.57.1.95 PMID:10632242

Yatham LN, Kennedy SH, Parikh SV, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018; 20(2):97-170. https://doi.org/10.1111/bdi.12609 PMID:29536616 PMCID:PMC5947163

Jordan VC. Molecular mechanisms of antiestrogen action in breast cancer. Breast Cancer Res Treat. 1994; 31(1):41-52. https:// doi.org/10.1007/BF00689675 PMID:7981455

Manji HK, Zarate CA. Molecular and cellular mechanisms underlying mood stabilization in bipolar disorder: Implications for the development of improved therapeutics. Mol Psychiatry. 2002; 7 Suppl 1:S1-7. https://doi.org/10.1038/sj.mp.4001068 PMID:11986989

Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003; 2(3):205-13. https://doi.org/10.1038/ nrd1031 PMID:12612646

Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005; 97(22):1652-62. https://doi.org/10.1093/jnci/ dji372 PMID:16288118

Dhingra K. Antiestrogens--tamoxifen, SERMs and beyond. Invest New Drugs. 1999; 17(3):285-311. https://doi. org/10.1023/A:1006348907994 PMID:10665480

Grainger DJ, Metcalfe JC. Tamoxifen: Teaching an old drug new tricks? Nat Med. 1996; 2(4):381-5. https://doi.org/10.1038/ nm0496-381 PMID:8597938

Banerjee S, Saxena N, Sengupta K, et al. 17alpha-estradiol-induced VEGF-A expression in rat pituitary tumor cells is mediated through ER independent but PI3K-Akt dependent signaling pathway. Biochem Biophys Res Commun. 2003; 300(1):209-15. https://doi.org/10.1016/S0006-291X(02)02830-9 PMID:12480545

Chang XZ, Li DQ, Hou YF, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 2007; 9(6):R76. https://doi.org/10.1186/bcr1789 PMID:17980029 PMCID:PMC2246172

Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol. 2021; 532:111322. https://doi.org/10.1016/j.mce.2021.111322 PMID:34000350

Riggins RB, Schrecengost RS, Guerrero MS, et al. Pathways to tamoxifen resistance. Cancer Lett. 2007; 256(1):1-24. https://doi. org/10.1016/j.canlet.2007.03.016 PMID:17475399 PMCID:PMC2533271

Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers (Basel). 2014; 6(3):1769-92. https://doi. org/10.3390/cancers6031769 PMID:25198391 PMCID:PMC4190567

Bolhuis H, van Veen HW, Poolman B, et al. Mechanisms of multidrug transporters. FEMS Microbiol Rev. 1997; 21(1):55-84. https://doi.org/10.1111/j.1574-6976.1997.tb00345.x PMID:9299702

Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010; 46(3):308-16. https://doi.org/10.1007/ s12033-010-9321-2 PMID:20717753

Chang YC, Cheung CHA, Kuo YL. Tamoxifen Rechallenge decreases metastatic potential but increases cell viability and clonogenicity in a tamoxifen-mediated cytotoxicity-resistant subline of human breast MCF7 cancer cells. Front Cell Dev Biol. 2020; 8:485. https://doi.org/10.3389/fcell.2020.00485 PMID:32695778 PMCID:PMC7338790

Wiebe VJ, Osborne CK, Fuqua SAW, et al. Tamoxifen resistance in breast cancer. Critical Reviews in Oncology/Hematology. 1993; 14(3):173-88. https://doi.org/10.1016/1040-8428(93)90008-R PMID:8397846

Garcia-Becerra R, Santos N, Diaz L, et al. Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci. 2012; 14(1):108-45. https://doi.org/10.3390/ijms14010108 PMID:23344024 PMCID:PMC3565254

Shah K, Rawal RM. Genetic and epigenetic modulation of drug resistance in cancer: challenges and opportunities. Curr Drug Metab. 2019; 20(14):1114-31. https://doi.org/10.2174/1389200221666200103111539 PMID:31902353

Corriden R, Hollands A, Olson J, et al. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat Commun. 2015; 6:8369. https://doi.org/10.1038/ncomms9369 PMID:26458291 PMCID:PMC4610010

Behjati S, Frank MH. The effects of tamoxifen on immunity. Curr Med Chem. 2009; 16(24):3076-80. https://doi. org/10.2174/092986709788803042 PMID:19689284 PMCID:PMC2902982

Levenson AS, Wolf DM, Catherino WH, et al. Understanding the antiestrogenic actions of raloxifene and a mechanism of drug resistance to tamoxifen. Breast Cancer. 1998; 5(2):99-106. https://doi.org/10.1007/BF02966681 PMID:11091634

Badia E, Oliva J, Balaguer P, et al. Tamoxifen resistance and epigenetic modifications in breast cancer cell lines. Curr Med Chem. 2007; 14(28):3035-45. https://doi.org/10.2174/092986707782794023 PMID:18220739 PMCID:PMC2789301

Brown R, Curry E, Magnani L, et al. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer. 2014; 14(11):747-53. https://doi.org/10.1038/nrc3819 PMID:25253389

Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012; 20(3):256-67. https://doi.org/10.4062/ biomolther.2012.20.3.256 PMID:24130921 PMCID:PMC3794521

Jordan VC. The development of tamoxifen for breast cancer therapy: A tribute to the late Arthur L. Walpole. Breast Cancer Res Treat. 1988;11(3):197-209. https://doi.org/10.1007/BF01807278 PMID:3048447

Harper MJ, Walpole AL. Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature. 1966; 212(5057):87. https://doi.org/10.1038/212087a0 PMID:5965580

Jordan VC. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol. 2006; 147(Suppl 1):S269-76. https://doi.org/10.1038/sj.bjp.0706399 PMID:16402113 PMCID:PMC1760730

Jordan VC. Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata. European Journal of Cancer (1965). 1976; 12(6):419-24. https://doi.org/10.1016/0014-2964(76)90030-X

Jordan VC, Allen KE. Evaluation of the antitumour activity of the non-steroidal antioestrogen monohydroxytamoxifen in the DMBA∗∗DMBA; 7,12-dimethylbenz(a)anthracene.-induced rat mammary carcinoma model. European Journal of Cancer (1965). 1980; 16(2):239-51. https://doi.org/10.1016/0014-2964(80)90156-5

Jordan VC. Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer. 2014; 21(3):R235- 46. https://doi.org/10.1530/ERC-14-0092 PMID:24659478 PMCID:PMC4029058

Jordan VC. Tamoxifen: catalyst for the change to targeted therapy. Eur J Cancer. 2008; 44(1):30-8. https://doi.org/10.1016/j. ejca.2007.11.002 PMID:18068350 PMCID:PMC2566958

Buchanan RB, Blamey RW, Durrant KR, et al. A randomized comparison of tamoxifen with surgical oophorectomy in premenopausal patients with advanced breast cancer. J Clin Oncol. 1986; 4(9):1326-30. https://doi.org/10.1200/JCO.1986.4.9.1326 PMID:3528402

Tamoxifen for early breast cancer: An overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet. 1998; 351(9114):1451-67. https://doi.org/10.1016/S0140-6736(97)11423-4

Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. The Lancet. 2005; 365(9472):1687-717. https://doi.org/10.1016/S0140-6736(05)66544-0 PMID:15894097

Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment, with illustrative cases. Trans Med Chir Soc Edinb. 1896; 15:153-79. https://doi.org/10.1016/S0140-6736(01)72384-7 PMID:29584099

Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014; 7:203-15. https://doi.org/10.2147/PGPM.S52762 PMID:25206307 PMCID:PMC4157397

Newberne JW, Kuhn WL, Elsea JR. Toxicologic studies on clomiphene. Toxicol Appl Pharmacol. 1966; 9(1):44-56. https://doi. org/10.1016/0041-008X(66)90029-9 PMID:5967566

Kistner RW. Induction of ovulation with clomiphene citrate (clomid). Obstet Gynecol Surv. 1965; 20(6):873-900. https://doi. org/10.1097/00006254-196512000-00001 PMID:5321936

Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004; 11(4):643-58. https://doi.org/10.1677/ erc.1.00776 PMID:15613444

Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002; 2(2):101- 12. https://doi.org/10.1038/nrc721 PMID:12635173

Kent Osborne C. Mechanisms for tamoxifen resistance in breast cancer: Possible role of tamoxifen metabolism. The Journal of Steroid Biochemistry and Molecular Biology. 1993; 47(1):83-9. https://doi.org/10.1016/0960-0760(93)90060-A PMID:8274445

Jordan VC. Fourteenth Gaddum Memorial lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol. 1993; 110(2):507-17. https://doi.org/10.1111/j.1476-5381.1993.tb13840.x PMID:8242225 PMCID:PMC2175926

Pollak MN, Huynh HT, Lefebvre SP. Tamoxifen reduces serum insulin-like growth factor I (IGF-I). Breast Cancer Res Treat. 1992; 22(1):91-100. https://doi.org/10.1007/BF01833337 PMID:1421427

Derman O, Kanbur NO, Tokur TE. The effect of tamoxifen on sex hormone binding globulin in adolescents with pubertal gynecomastia. J Pediatr Endocrinol Metab. 2004; 17(8):1115-9. https://doi.org/10.1515/JPEM.2004.17.8.1115 PMID:15379424

Sakai F, Cheix F, Clavel M, et al. Increases in steroid binding globulins induced by tamoxifen in patients with carcinoma of the breast. J Endocrinol. 1978; 76(2):219-26. https://doi.org/10.1677/joe.0.0760219 PMID:564384

Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol. 2016; 781:173-80. https://doi.org/10.1016/j.ejphar.2016.04.017 PMID:27083550

Brandt S, Kopp A, Grage B, et al. Effects of tamoxifen on transcriptional level of transforming growth factor beta (TGF-beta) isoforms 1 and 2 in tumor tissue during primary treatment of patients with breast cancer. Anticancer Res. 2003; 23(1a):223-9.

Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018; 18(1):8-20. https://doi.org/10.17305/bjbms.2018.2756 PMID:29274272 PMCID:PMC5826678

Lee W-L, Cheng M-H, Chao H-T, et al. The role of selective estrogen receptor modulators on breast cancer: From tamoxifen to raloxifene. Taiwanese Journal of Obstetrics and Gynecology. 2008; 47(1):24-31. https://doi.org/10.1016/S1028-4559(08)60051-0 PMID:18400579

Taniguchi-Takizawa T, Kato N, Shimizu M, et al. Different substrate elimination rates of model drugs pH-dependently mediated by flavin-containing monooxygenases and cytochromes P450 in human liver microsomes. Drug Metab Pharmacokinet. 2021; 40:100412. https://doi.org/10.1016/j.dmpk.2021.100412 PMID:34352706

Cronin-Fenton DP, Damkier P, Lash TL. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol. 2014; 10(1):107-22. https://doi.org/10.2217/fon.13.168 PMID:24328412 PMCID:PMC4319217

Wakeling AE, Valcaccia B, Newboult E, et al. Non-steroidal antioestrogens--receptor binding and biological response in rat uterus, rat mammary carcinoma and human breast cancer cells. J Steroid Biochem. 1984; 20(1):111-20. https://doi.org/10.1016/0022- 4731(84)90197-3 PMID:6538611

Colletta AA, Benson JR, Baum M. Alternative mechanisms of action of anti-oestrogens. Breast Cancer Res Treat. 1994; 31(1):5-9. https://doi.org/10.1007/BF00689672 PMID:7981456

Schafer JM, Liu H, Bentrem DJ, et al. Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 3511. Cancer Research. 2000; 60(18):5097-105.

Butta A, MacLennan K, Flanders KC, et al. Induction of transforming growth factor beta 1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res. 1992; 52(15):4261-4.

Ho GH, Ji CY, Phang BH, et al. Tamoxifen alters levels of serum insulin-like growth factors and binding proteins in postmenopausal breast cancer patients: a prospective paired cohort study. Ann Surg Oncol. 1998; 5(4):361-7. https://doi.org/10.1007/BF02303501 PMID:9641459

Cullen KJ, Lippman ME, Chow D, et al. Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes associated with malignant progression. Mol Endocrinol. 1992; 6(1):91-100. https://doi.org/10.1210/mend.6.1.1310798 PMID:1310798

Haran EF, Maretzek AF, Goldberg I, et al. Tamoxifen enhances cell death in implanted MCF7 breast cancer by inhibiting endothelium growth. Cancer Res. 1994; 54(21):5511-4.

Anzai Y, Holinka CF, Kuramoto H, et al. Stimulatory effects of 4-hydroxytamoxifen on proliferation of human endometrial adenocarcinoma cells (Ishikawa line). Cancer Res. 1989; 49(9):2362-5.

Condorelli R, Vaz-Luis I. Managing side effects in adjuvant endocrine therapy for breast cancer. Expert Rev Anticancer Ther. 2018; 18(11):1101-12. https://doi.org/10.1080/14737140.2018.1520096 PMID:30188738

Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011; 62:233-47. https://doi. org/10.1146/annurev-med-070909-182917 PMID:20887199 PMCID:PMC3656649

Fullwood MJ, Liu MH, Pan YF, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009; 462(7269):58-64. https://doi.org/10.1038/nature08497 PMID:19890323 PMCID:PMC2774924

Carroll JS, Liu XS, Brodsky AS, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005; 122(1):33-43. https://doi.org/10.1016/j.cell.2005.05.008 PMID:16009131

Thomas C, Gustafsson JA. The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer. 2011; 11(8):597-608. https://doi.org/10.1038/nrc3093 PMID:21779010

Hartman J, Lindberg K, Morani A, et al. Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res. 2006; 66(23):11207-13. https://doi.org/10.1158/0008-5472.CAN-06-0017 PMID:17145865

Strom A, Hartman J, Foster JS, et al. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A. 2004; 101(6):1566-71. https://doi.org/10.1073/pnas.0308319100 PMID:14745018 PMCID:PMC341775

Speirs V, Malone C, Walton DS, et al. Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res. 1999; 59(21):5421-4.

Speirs V, Parkes AT, Kerin MJ, et al. Coexpression of estrogen receptor alpha and beta: Poor prognostic factors in human breast cancer? Cancer Res. 1999; 59(3):525-8.

Taylor SE, Martin-Hirsch PL, Martin FL. Oestrogen receptor splice variants in the pathogenesis of disease. Cancer Lett. 2010; 288(2):133-48. https://doi.org/10.1016/j.canlet.2009.06.017 PMID:19608332

Yan Y, Yu L, Castro L, et al. ERalpha36, a variant of estrogen receptor alpha, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells. PLoS One. 2017; 12(10):e0186078. https://doi.org/10.1371/journal.pone.0186078 PMID:29020039 PMCID:PMC5636123

Ohe K, Miyajima S, Abe I, et al. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol. 2018; 182:21-6. https://doi.org/10.1016/j.jsbmb.2018.04.007 PMID:29678492

Shaaban AM, Green AR, Karthik S, et al. Nuclear and cytoplasmic expression of ERbeta1, ERbeta2, and ERbeta5 identifies distinct prognostic outcome for breast cancer patients. Clin Cancer Res. 2008; 14(16):5228-35. https://doi.org/10.1158/1078- 0432.CCR-07-4528 PMID:18698041

Madeira M, Mattar A, Logullo AF, et al. Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer. 2013; 13:425. https://doi.org/10.1186/1471-2407-13-425 PMID:24047421 PMCID:PMC3851532

Guillette TC, Jackson TW, Belcher SM. Duality of estrogen receptor beta action in cancer progression. Curr Opin Pharmacol. 2018; 41:66-73. https://doi.org/10.1016/j.coph.2018.05.001 PMID:29772419 PMCID:PMC8008732

Kelly MJ, Levin ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab. 2001; 12(4):152-6. https:// doi.org/10.1016/S1043-2760(01)00377-0 PMID:11295570

Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 2008; 108(3):351-61. https://doi.org/10.1007/s10549-007-9618-4 PMID:17592774

Fan P, Wang J, Santen RJ, et al. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res. 2007; 67(3):1352-60. https://doi. org/10.1158/0008-5472.CAN-06-1020 PMID:17283173

Tonetti DA, Jordan VC. The role of estrogen receptor mutations in tamoxifen-stimulated breast cancer. J Steroid Biochem Mol Biol. 1997; 62(2-3):119-28. https://doi.org/10.1016/S0960-0760(97)00034-4 PMID:9393947

Alluri PG, Speers C, Chinnaiyan AM. Estrogen receptor mutations and their role in breast cancer progression. Breast Cancer Res. 2014; 16(6):494. https://doi.org/10.1186/s13058-014-0494-7 PMID:25928204 PMCID:PMC4429420

Clusan L, Le Goff P, Flouriot G, et al. A Closer Look at Estrogen receptor mutations in breast cancer and their implications for estrogen and antiestrogen responses. Int J Mol Sci. 2021; 22(2). https://doi.org/10.3390/ijms22020756 PMID:33451133 PMCID:PMC7828590

Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. Explor Target Antitumor Ther. 2021; 2:385-400. https://doi.org/10.37349/etat.2021.00052 PMID:34528025 PMCID:PMC8439438

Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998; 95(7):927-37. https://doi.org/10.1016/S0092-8674(00)81717-1 PMID:9875847

Haque MM, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne). 2019; 10:573. https://doi.org/10.3389/fendo.2019.00573 PMID:31496995 PMCID:PMC6712962

Weiner M, Skoog L, Fornander T, et al. Oestrogen receptor co-activator AIB1 is a marker of tamoxifen benefit in postmenopausal breast cancer. Ann Oncol. 2013; 24(8):1994-9. https://doi.org/10.1093/annonc/mdt159 PMID:23670096 PMCID:PMC3718507

Lavinsky RM, Jepsen K, Heinzel T, et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A. 1998; 95(6):2920-5. https://doi.org/10.1073/pnas.95.6.2920 PMID:9501191 PMCID:PMC19670

Ranganathan P, Nadig N, Nambiar S. Non-canonical estrogen signaling in endocrine resistance. Frontiers in Endocrinology. 2019; 10. https://doi.org/10.3389/fendo.2019.00708 PMID:31749762 PMCID:PMC6843063

Schiff R, Reddy P, Ahotupa M, et al. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J Natl Cancer Inst. 2000; 92(23):1926-34. https://doi.org/10.1093/jnci/92.23.1926 PMID:11106684

Johnston SR, Lu B, Scott GK, et al. Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res. 1999; 5(2):251-6.

Jeselsohn R, Cornwell M, Pun M, et al. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci U S A. 2017; 114(22):E4482-E91. https://doi.org/10.1073/pnas.1620993114 PMID:28507152 PMCID:PMC5465894

Hurtado A, Holmes KA, Ross-Innes CS, et al. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011; 43(1):27-33. https://doi.org/10.1038/ng.730 PMID:21151129 PMCID:PMC3024537

Robinson JL, Carroll JS. FoxA1 is a key mediator of hormonal response in breast and prostate cancer. Front Endocrinol (Lausanne). 2012; 3:68. https://doi.org/10.3389/fendo.2012.00068 PMID:22649425 PMCID:PMC3355944

Magnani L, Stoeck A, Zhang X, et al. Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A. 2013; 110(16):E1490-9. https://doi.org/10.1073/pnas.1219992110 PMID:23576735 PMCID:PMC3631697

Yun J, Pannuti A, Espinoza I, et al. Crosstalk between PKCalpha and Notch-4 in endocrine-resistant breast cancer cells. Oncogenesis. 2013; 2:e60. https://doi.org/10.1038/oncsis.2013.26 PMID:23917222 PMCID:PMC3759125

Kalyanaraman A, Gnanasampanthapandian D, Shanmughan P, et al. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERalpha+ breast cancer cells. Stem Cell Investig. 2020; 7:20. https://doi. org/10.21037/sci-2020-020 PMID:33294429 PMCID:PMC7715663

Nicholson RI, Hutcheson IR, Jones HE, et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metab Disord. 2007; 8(3):241-53. https://doi.org/10.1007/s11154-007-9033-5 PMID:17486454

Knowlden JM, Hutcheson IR, Barrow D, et al. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology. 2005; 146(11):4609-18. https://doi.org/10.1210/ en.2005-0247 PMID:16037379

Giuliano M, Trivedi MV, Schiff R. Bidirectional Crosstalk between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 Signaling Pathways in Breast Cancer: Molecular Basis and Clinical Implications. Breast Care (Basel). 2013; 8(4):256- 62. https://doi.org/10.1159/000354253 PMID:24415978 PMCID:PMC3808214

Hasson SP, Rubinek T, Ryvo L, et al. Endocrine resistance in breast cancer: focus on the phosphatidylinositol 3-kinase/akt/ mammalian target of rapamycin signaling pathway. Breast Care (Basel). 2013; 8(4):248-55. https://doi.org/10.1159/000354757 PMID:24415977 PMCID:PMC3808218

Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992; 24(2):85-95. https://doi.org/10.1007/BF01961241 PMID:8095168

Chung YL, Sheu ML, Yang SC, et al. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer. 2002; 97(3):306-12. https://doi.org/10.1002/ ijc.1614 PMID:11774281

He H, Sinha I, Fan R, et al. c-Jun/AP-1 overexpression reprograms ERalpha signaling related to tamoxifen response in ERalphapositive breast cancer. Oncogene. 2018;37(19):2586-600. https://doi.org/10.1038/s41388-018-0165-8 PMID:29467493

Sasser AK, Sullivan NJ, Studebaker AW, et al. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J. 2007; 21(13):3763-70. https://doi.org/10.1096/fj.07-8832com PMID:17586727

Gottardis MM, Ricchio ME, Satyaswaroop PG, et al. Effect of steroidal and nonsteroidal antiestrogens on the growth of a tamoxifen-stimulated human endometrial carcinoma (EnCa101) in athymic mice. Cancer Res. 1990; 50(11):3189-92.

Han XL, Liehr JG. Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res. 1992; 52(5):1360-3.

Arpino G, Green SJ, Allred DC, et al. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptorpositive metastatic breast cancer: A southwest oncology group study. Clin Cancer Res. 2004; 10(17):5670-6. https://doi. org/10.1158/1078-0432.CCR-04-0110 PMID:15355892

Gee JM, Robertson JF, Gutteridge E, et al. Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer. 2005; 12 Suppl 1:S99-S111. https://doi.org/10.1677/ erc.1.01005 PMID:16113104

Dowsett M, Johnston S, Martin LA, et al. Growth factor signalling and response to endocrine therapy: the Royal Marsden Experience. Endocr Relat Cancer. 2005; 12 Suppl 1:S113-7. https://doi.org/10.1677/erc.1.01044 PMID:16113087

Gutierrez MC, Detre S, Johnston S, et al. Molecular changes in tamoxifen-resistant breast cancer: Relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005; 23(11):2469-76. https://doi.org/10.1200/ JCO.2005.01.172 PMID:15753463

Kirkegaard T, Witton CJ, McGlynn LM, et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol. 2005; 207(2):139-46. https://doi.org/10.1002/path.1829 PMID:16088978

Fex G, Adielsson G, Mattson W. Oestrogen-like effects of tamoxifen on the concentration of proteins in plasma. Acta Endocrinol (Copenh). 1981; 97(1):109-13. https://doi.org/10.1530/acta.0.0970109 PMID:6784425

Jordan VC, Fritz NF, Tormey DC. Endocrine effects of adjuvant chemotherapy and long-term tamoxifen administration on node-positive patients with breast cancer. Cancer Res. 1987; 47(2):624-30.

Ferrazzi E, Cartei G, Mattarazzo R, et al. Oestrogen-like effect of tamoxifen on vaginal epithelium. Br Med J. 1977; 1(6072):1351- 2. https://doi.org/10.1136/bmj.1.6072.1351-e PMID:861624 PMCID:PMC1607200

Murphy LC, Sutherland RL. A high-affinity binding site for the antioestrogens, tamoxifen and CI 628, in immature rat uterine cytosol which is distinct from the oestrogen receptor. J Endocrinol. 1981; 91(1):155-61. https://doi.org/10.1677/joe.0.0910155 PMID:7028904

Sudo K, Monsma FJ, Jr., Katzenellenbogen BS. Antiestrogen-binding sites distinct from the estrogen receptor: Subecellular localization, ligand specificity, and distribution in tissues of the rat. Endocrinology. 1983; 112(2):425-34. https://doi.org/10.1210/ endo-112-2-425 PMID:6848356

Miller MA, Katzenellenbogen BS. Characterization and quantitation of antiestrogen binding sites in estrogen receptor-positive and -negative human breast cancer cell lines. Cancer Res. 1983; 43(7):3094-100.

Katzenellenbogen BS, Miller MA, Mullick A, et al. Antiestrogen action in breast cancer cells: modulation of proliferation and protein synthesis, and interaction with estrogen receptors and additional antiestrogen binding sites. Breast Cancer Res Treat. 1985; 5(3):231-43. https://doi.org/10.1007/BF01806018 PMID:4027393

O’Brian CA, Liskamp RM, Solomon DH, et al. Inhibition of protein kinase C by tamoxifen. Cancer Res. 1985; 45(6):2462-5.

Lam HY. Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem Biophys Res Commun. 1984; 118(1):27-32. https://doi.org/10.1016/0006-291X(84)91062-3 PMID:6320825

Brandes LJ, Macdonald LM, Bogdanovic RP. Evidence that the antiestrogen binding site is a histamine or histamine-like receptor. Biochem Biophys Res Commun. 1985; 126(2):905-10. https://doi.org/10.1016/0006-291X(85)90271-2 PMID:2858205

Hiemke C, Ghraf R. Interaction of non-steroidal antiestrogens with dopamine receptor binding. J Steroid Biochem. 1984; 21(6):663-7. https://doi.org/10.1016/0022-4731(84)90028-1 PMID:6098784

Ben-Baruch G, Schreiber G, Sokolovsky M. Cooperativity pattern in the interaction of the antiestrogen drug clomiphene with the Muscarinic receptors. Mol Pharmacol. 1982; 21(2):287-93.

Saji S, Hirose M, Toi M. Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol. 2005; 56 Suppl 1:21-6. https://doi.org/10.1007/s00280-005-0107-3 PMID:16273360

Murphy LC, Watson PH. Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer? Endocr Relat Cancer. 2006; 13(2):327-34. https://doi.org/10.1677/erc.1.01141 PMID:16728566

Matthews J, Wihlen B, Tujague M, et al. Estrogen Receptor (ER) beta modulates ERalpha-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol Endocrinol. 2006; 20(3):534-43. https://doi. org/10.1210/me.2005-0140 PMID:16293641

Stossi F, Barnett DH, Frasor J, et al. Transcriptional profiling of estrogen-regulated gene expression via Estrogen Receptor (ER) alpha or ERbeta in human osteosarcoma cells: distinct and common target genes for these receptors. Endocrinology. 2004; 145(7):3473-86. https://doi.org/10.1210/en.2003-1682 PMID:15033914

Chang EC, Frasor J, Komm B, et al. Impact of estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells. Endocrinology. 2006; 147(10):4831-42. https://doi.org/10.1210/en.2006-0563 PMID:16809442

Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019; 2:141-60. https://doi.org/10.20517/cdr.2019.10 PMID:34322663 PMCID:PMC8315569

Vaidya FU, Sufiyan Chhipa A, Mishra V, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken). 2020 :e1291. https://doi.org/10.1002/cnr2.1291 PMID:33052041 PMCID:PMC9780431

Bekele RT, Venkatraman G, Liu RZ, et al. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: Implications for tamoxifen therapy and resistance. Sci Rep. 2016; 6:21164. https://doi.org/10.1038/srep21164 PMID:26883574 PMCID:PMC4756695

Mansoori B, Mohammadi A, Davudian S, et al. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017; 7(3):339-48. https://doi.org/10.15171/apb.2017.041 PMID:29071215 PMCID:PMC5651054

Bekele RT, Venkatraman G, Liu RZ, I. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: Implications for tamoxifen therapy and resistance. Sci Rep. 2016; 6:21164. https://doi.org/10.1038/srep21164 PMID:26883574 PMCID:PMC4756695

Liu Y, Li Q, Zhou L, et al. Cancer drug resistance: redox resetting renders a way. Oncotarget. 2016; 7(27):42740-61. https://doi. org/10.18632/oncotarget.8600 PMID:27057637 PMCID:PMC5173169

Choi HK, Yang JW, Roh SH, et al. Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer. 2007; 14(2):293-303. https://doi.org/10.1677/ERC-06-0016 PMID:17639045

Kathawala RJ, Gupta P, Ashby CR, Jr., et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist Updat. 2015; 18:1-17. https://doi.org/10.1016/j.drup.2014.11.002 PMID:25554624

Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015; 7:14. https://doi.org/10.12703/P7-14 PMID:25750732 PMCID:PMC4338842

Dean M, Rzhetsky A, Allikmets R. The human ATP-Binding Cassette (ABC) transporter superfamily. Genome Res. 2001; 11(7):1156-66. https://doi.org/10.1101/gr.184901 PMID:11435397

Theile D, Wizgall P. Acquired ABC-transporter overexpression in cancer cells: transcriptional induction or Darwinian selection? Naunyn Schmiedebergs Arch Pharmacol. 2021; 394(8):1621-32. https://doi.org/10.1007/s00210-021-02112-3 PMID:34236499 PMCID:PMC8298356

Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer. 2012; 31(2):100-9. https://doi.org/10.5732/cjc.011.10326 PMID:22237039 PMCID:PMC3777470

Lu JF, Pokharel D, Bebawy M. MRP1 and its role in anticancer drug resistance. Drug Metab Rev. 2015; 47(4):406-19. https://doi. org/10.3109/03602532.2015.1105253 PMID:26541366

The UniProt C. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017; 45(D1):D158-D69. https://doi. org/10.1093/nar/gkw1099 PMID:27899622 PMCID:PMC5210571

Liu W, Xie Y, Ma J, et al. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015; 31(20):3359-61. https://doi.org/10.1093/bioinformatics/btv362 PMID:26069263 PMCID:PMC4595897

Wang X, Li Y, Qian Y, et al. Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase. Oncotarget. 2017; 8(50):87860-77. https://doi.org/10.18632/oncotarget.21231 PMID:29152126 PMCID:PMC5675678

Schneider V, Krieger ML, Bendas G, et al. Contribution of intracellular ATP to cisplatin resistance of tumor cells. J Biol Inorg Chem. 2013; 18(2):165-74. https://doi.org/10.1007/s00775-012-0960-6 PMID:23183891

Qian Y, Wang X, Liu Y, et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 2014; 351(2):242-51. https://doi.org/10.1016/j.canlet.2014.06.008 PMID:24973521

Yin Y, Li W, Deng M, et al. Extracellular high mobility group box chromosomal protein 1 promotes drug resistance by increasing the expression of Pglycoprotein expression in gastric adenocarcinoma cells. Mol Med Rep. 2014; 9(4):1439-43. https://doi. org/10.3892/mmr.2014.1961 PMID:24549588

Callaghan R, Higgins CF. Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer. 1995; 71(2):294-9. https://doi.org/10.1038/bjc.1995.59 PMID:7841043 PMCID:PMC2033580

Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat. 2012; 15(1-2):21-38. https://doi.org/10.1016/j.drup.2012.01.008 PMID:22356866

Berdasco M, Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat Rev Genet. 2019; 20(2):109-27. https:// doi.org/10.1038/s41576-018-0074-2 PMID:30479381

Garcia-Martinez L, Zhang Y, Nakata Y, et al. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021; 12(1):1786. https://doi.org/10.1038/s41467-021-22024-3 PMID:33741974 PMCID:PMC7979820

Zeller C, Brown R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer. Ther Adv Med Oncol. 2010; 2(5):319-29. https://doi.org/10.1177/1758834010375759 PMID:21789144 PMCID:PMC3126026

Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 2006; 94(8):1087-92. https://doi.org/10.1038/sj.bjc.6603024 PMID:16495912 PMCID:PMC2361257

Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat. 2004; 7(4-5):267-78. https://doi.org/10.1016/j.drup.2004.06.005 PMID:15533764

Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer (Dove Med Press). 2014; 6:1-13. https://doi.org/10.2147/BCTT.S37638 PMID:24648765 PMCID:PMC3929252

Watanabe T, Oba T, Tanimoto K, et al. Tamoxifen resistance alters sensitivity to 5-fluorouracil in a subset of estrogen receptorpositive breast cancer. PLoS One. 2021; 16(6):e0252822. https://doi.org/10.1371/journal.pone.0252822 PMID:34101751 PMCID:PMC8186817

Behbahani GD, Khani S, Hosseini HM, et al. The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iran J Basic Med Sci. 2016; 19(10):1031-9.

Qian Z, Shen Q, Yang X, et al. The role of extracellular vesicles: An epigenetic view of the cancer microenvironment. Biomed Res Int. 2015; 2015:649161. https://doi.org/10.1155/2015/649161 PMID:26582468 PMCID:PMC4637039

Guo QR, Wang H, Yan YD, et al. The role of exosomal microRNA in cancer drug resistance. Front Oncol. 2020;10:472. https:// doi.org/10.3389/fonc.2020.00472 PMID:32318350 PMCID:PMC7154138

Johnson AB, O’Malley BW. Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and Steroid Receptor Modulator (SRM)-based cancer therapy. Mol Cell Endocrinol. 2012; 348(2):430-9. https://doi.org/10.1016/j. mce.2011.04.021 PMID:21664237 PMCID:PMC3202666

Murakami S, Nagari A, Kraus WL. Dynamic assembly and activation of estrogen receptor alpha enhancers through coregulator switching. Genes Dev. 2017; 31(15):1535-48. https://doi.org/10.1101/gad.302182.117 PMID:28887413 PMCID:PMC5630019

Yi P, Wang Z, Feng Q, et al. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell. 2015; 57(6):1047-58. https://doi.org/10.1016/j.molcel.2015.01.025 PMID:25728767 PMCID:PMC4369429

Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013; 498(7455):516-20. https://doi.org/10.1038/nature12210 PMID:23728302 PMCID:PMC3718886

Fan S, Wang J, Yuan R, et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science. 1999; 284(5418):1354- 6. https://doi.org/10.1126/science.284.5418.1354 PMID:10334989

Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012; 12(6):381-5. https://doi. org/10.1038/nrc3263 PMID:22555282

He J, Feng C, Zhu H, et al. Grainyhead-like 2 as a double-edged sword in development and cancer. Am J Transl Res. 2020; 12(2):310-31.

Chi D, Singhal H, Li L, et al. Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proc Natl Acad Sci U S A. 2019; 116(23):11437-43. https://doi.org/10.1073/pnas.1819155116 PMID:31110002 PMCID:PMC6561257

Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: Relevance to hormone-regulated cancer therapy. Nat Rev Cancer. 2014; 14(1):26-38. https://doi.org/10.1038/nrc3622 PMID:24505618

Teyssier C, Le Romancer M, Sentis S, et al. Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab. 2010; 21(3):181-9. https://doi.org/10.1016/j.tem.2009.11.002 PMID:20005732

Manavathi B, Samanthapudi VS, Gajulapalli VN. Estrogen receptor coregulators and pioneer factors: The orchestrators of mammary gland cell fate and development. Front Cell Dev Biol. 2014; 2:34. https://doi.org/10.3389/fcell.2014.00034 PMID:25364741 PMCID:PMC4207046

Holding AN, Giorgi FM, Donnelly A, et al. Correction to: VULCAN integrates ChIP-seq with patient-derived co-expression networks to identify GRHL2 as a key co-regulator of ERa at enhancers in breast cancer. Genome Biol. 2019; 20(1):122. https:// doi.org/10.1186/s13059-019-1733-0 PMID:31200751 PMCID:PMC6567503

Chan HL, Morey L. Emerging Roles for Polycomb-Group Proteins in Stem Cells and Cancer. Trends Biochem Sci. 2019; 44(8):688-700. https://doi.org/10.1016/j.tibs.2019.04.005 PMID:31085088

Shi B, Liang J, Yang X, et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol. 2007; 27(14):5105-19. https://doi.org/10.1128/MCB.00162-07 PMID:17502350 PMCID:PMC1951944

Lee JY, Won HY, Park JH, et al. MEL-18 loss mediates estrogen receptor-alpha downregulation and hormone independence. J Clin Invest. 2015; 125(5):1801-14. https://doi.org/10.1172/JCI73743 PMID:25822021 PMCID:PMC4463188