Journal of the Indian Math. Soc. 38 (1974) 131-145

SOME PROPERTIES OF SCHUBERT VARIETIES

By C. MUSILI

[Received May 24, 1973]

Introduction. This paper is a continuation of our earlier paper [10]. With notations as in [10] (some of which are recalled in 1 and 2, below), we prove the following

1. THEOREM (6.1, below). The Picard group of a non-trivial Schubert variety Ω in the Grassmann variety $G_{d,n}$ is Z and is generated by the class of \mathcal{O}_{Ω} (1).

In fact, our method of proof of the vanishing theorems for Ω (and of the above theorem) yields the following

2. THEOREM. Let $W \subseteq G_{d,n}$ be an equidimensional closed subscheme whose irreducible components are Schubert varieties. Then (i) W is reduced (ii) Vanishing theorems hold for W (iii) Postulation formula holds for W (iv) W is arithmetically Cohen-Macaulay and (v) Pic $W = \mathbb{Z}$ if dim $W \ge 1$.

We then establish the precise relationship that exists between determinental loci and Schubert varieties (cf. 3 and 7, below). We prove the

3. THEOREM. (7.3, below). Determinantal loci cre canonically isomorphic to the scheme-theoretic intersection of Schubert varieties with the big open cell in the opposite cellular decomposition of $G_{d,n}$.

As an obvious consequence of this theorem, it follows that the determinantal loci are integral, Cohen-Macaulay and normal. A useful fact to be noted is that Schubert varieties are cones in a neighbourhood of their distinguished point, namely the point Schubert variety (cf. Remark 7.4 (1 and 3), below). With this observation we prove the following.

4. THEOREM (8.1, below). Let Ω be a Schubert variety in $G_{d,n}$ and D be the determinantal locus in Ω . Then the following statements are

© INDIAN MATHEMATICAL SOCIETY 1974

equivalent: (i) Ω is arithmetically factorial (ii) there exists a unique Schubert variety of codimension 1 in Ω (iii) Ω is non-singular (in fact, isomorphic to a Grassmann variety) (iv) Ω is factorial (v) D is factorial (at its vertex).

It is easy to recognize the non-singular Schubert varieties in $G_{d,n}$. By a result of Murthy ([9], p. 419), the non-singular Schubert varieties and hence also the codimension 1 Schubert varieties contained in them are arithmetically Gorenstein.

5. Several proofs are now available for the arithmetic (normality and) Cohen-Macaulay nature of Schubert varieties. Here we include another proof (cf. 4.1 below) in which we construct a canonical system of parameters at the vertex of $\hat{\Omega}$. This system induces also a system of parameters at the vertex of the determinantal locus that Ω contains (cf. Remark 7.4 (3), below). Finally, we point out (in 5.1, below) that the arithmetic normality of Ω is an immediate consequence of Pieri's formula.

I am grateful to Professor C.S. Seshadri for many helpful suggestions and encouragement.

1. Notation and Terminology. Let V be an n-dimensional (finite) vector space over an algebraically closed field k of arbitrary characteristic. For a fixed integer d, $1 \le d < n$, $G_{d,n}$ denotes the Grassmann variety of d-dimensional linear subspaces of V. Let $\mathbf{P} = \mathbf{P}(\wedge^{d}(V))$ denote the projective space in which $G_{d,n}$ is canonically imbedded.

Let L denote the hyper-plane bundle on **P** as well as its restriction to all subvarieties of **P**. For any subvariety X of **P**, \hat{X} denotes the cone over X, and (0) denotes the vertex of \hat{X} .

We fix a celullar decomposition of $G_{d,n}$ ([10], 4, p. 147). The Schubert cells are parametrised by the set $S = \{(a) = (a_1, \ldots, a_d) \mid 1 \leq a_1 < \ldots < a_d \leq n\}$. For $(a) \in S$, $U_{(a)}$ denotes the Schubert cell, and $\Omega_{(a)} = Zariski$ closure of $U_{(a)}$ in $G_{d,n}$ (with the canonical reduced scheme structure) denotes the corresponding Schubert variety.

For the standard partial order on S, namely, $(a) \leq (b)$ if $a_i \leq b_i$, $1 \leq i \leq d$; we have $(a) \leq (b)$ if and only if $\Omega_{(a)} \supseteq \Omega_{(b)}$ ([10], 1, p. 151). We write $(\min) = (1, \ldots, d)$ and $(\max) = (n - d + 1, \ldots, n)$ which are

the (unique) minimal and maximal elements of S. We have $\Omega_{(\min)} = G_{d,n}$ and $\Omega_{(\max)} = \{x_0\}$ the point Schubert variety.

Fix a basis e_1, \ldots, e_n for V, and identify $V^d = V \oplus \ldots \oplus V$, (*d* copies) with the set of $d \times n$ matrices $\{(x_{ij})/x_{ij} \in k, 1 \le i \le d, 1 \le j \le n\}$. For $(a) \in S$, let $D_{(a)}$, $C_{(a)}$ and $C'_{(a)}$ denote the subvarieties of the affine space V^d defined as follows:

$$D_{(a)} = \{(x_{ij}) \in V^d \mid x_{ij} = 0 \text{ for } j < a_i, \ 1 \le i \le d, \ 1 \le j \le n\}$$
$$C_{(a)} = \{(x_{ij}) \in D_{(a)} \mid x_{ia_j} = 1, \ 1 \le i \le d\}$$
$$C'_{(a)} = \{(x_{ij}) \in C_{(a)} \mid x_{ia_k} = 0 \text{ for } i < k, \ 1 \le i, \ k \le d\}.$$

(Note that $D_{(a)}$, $C_{(a)}$ and $C'_{(a)}$ are affine spaces). Let $\pi: V^d \to \bigwedge^d(V)$ be the canonical morphism defined by $(v_1, \ldots, v_d) \mapsto b_1 \lambda \ldots \lambda v_d, v_i \in V$. It is easy to see that $\pi(D_{(a)}) = \hat{\Omega}_{(a)}, \pi(C_{(a)}) = \pi(C'_{(a)}) = U_{(a)}$, and that $\pi: C'_{(a)} \cong U_{(a)}$ is an isomorphism.

REMARK 1.1. When we want to study the properties of a given Schubert variety $\Omega_{(a)}$ or of those contained therein, we can assume $a_1 = 1$ and $a_a < n$.

For, suppose $a_i = a + b_i$, $a \ge 0$, $1 \le i \le d$. Then it is easy to see that $\Omega_{(a)}$ is canonically isomorphic to the Schubert variety $\Omega_{(b)}$ in the Grassmannian $G_{d, n-a}$ associated to a vector space W of dimension n - a. In fact, we can choose W to be the subspace of V spanned by $\{e_i\}$, $a + 1 \le i \le n$. Thus we can assume $a_1 = 1$. Similarly if $a_d = n$, we can identify $\Omega_{(a)}$ with $\Omega_{(a_1, \ldots, a_r)}$ in G_r , n-d+r for a suitable r such that r < d and $a_r < n - d + r$. In this case W can be choosen to be an (n - d + r)-dimensional quotient space of V.

COROLLARY 1.2. The Schubert varieties of dimension ≤ 2 are isomorphic to the projective spaces \mathbf{P}_k^r , $r \leq 2$.

For, if $\Omega_{(a)}$ is of dimension ≤ 2 , it follows from the dimension formula (cf. [10], Prop. 5.2, p. 149) that (a) is equal to one of the following elements of S, namely, (max), $(n-d, n-d+2, \ldots, n)$, $(n-d-1, n-d+2, \ldots, n)$ or $(n-d, n-d+1, \ldots, n)$ assertion follows in view of the above remark.

2. The homogeneous coordinate rings. Let X_{ij} denote the coordinate functions on the affine space V^d . For $(a) \in S$, the coordinate ring of the affine space $D_{(a)}$ is the polynomial ring $K[X_{ij}]_{(a)}$ with $X_{ij} = 0$ for $j < a_i, 1 \le i \le d, 1 \le j \le n$. Let $R_{(a)}$ denote the homogeneous coordinate ring of $\Omega_{(a)}$. Recall that $R_{(a)}$ is identified with the subring of $k[X_{ij}]_{(a)}$, generated by the $\{p_{(i)}\}, (i) \in S$, where

$$p_{(i)} = \det \begin{vmatrix} X_{1i_1} \dots X_{1i_d} \\ \dots \\ X_{di_1} \dots X_{di_d} \end{vmatrix}$$

Note that $p_{(i)} \neq 0$ if and only if $(a) \leq (i)$.

REMARK 2.1. Every non-zero $p_{(i)}$ in $R_{(a)}$ is an irreducible element, i.e., the ideal $(p_{(i)})$ is maximal among the principal ideals in $R_{(a)}$. (This is clear because $R_{(a)}$ is a graded domain generated by the $p_{(i)}$'s, but the $p_{(i)}$'s are of least degree.)

We write $R = R_{(min)}$ for the homogeneous coordinate ring of $G_{d,n}$. Recall that the ideal defining $\Omega_{(a)}$ in $G_{d,n}$ is the ideal $I(S_{(a)})$ in R generated by the $\{p_{(i)}\}, (i) \in S_{(a)}$ where $S_{(a)} = \{(i) \in S/i_t < a_t \text{ for some } t \leq d\}$. That is to say $R_{(a)} \approx R/I(S_{(a)})$ (cf. [10], 4, p. 154).

3. Opposite cellular decomposition of $G_{d,n}$. The cellular decomposition of $G_{d,n}$ obtained by taking the orbits under the Borel subgroup of SL(n, k) consisting of the *lower* triangular matrices is called the *opposite* cellular decomposition of $G_{d,n}$ (opposite to the one we have fixed). Let —denote the cells in this decomposition. For all (a), (b) $\in S$, we have $\Omega'_{(a)} \subseteq \Omega'_{(b)}$ if and only if (a) $\leq (b)$. Consequently, $\Omega'_{(max)} = G_{d,n}$ and the section of $G_{d,n}$ with the hyper-plane $H_{(max)}$, whose equation is $p_{(max)} = 0$, is the codimension 1 Schubert variety in this decomposition. For our future use, we prove the following

PROPOSITION 3.1. The set-theoretic intersection of any Schubert variety $\Omega_{(a)}$ with the codimension 1 Schubert variety in the opposite cellular decomposition is actually scheme-theoretic and is reduced and irreducible, i.e., $\Omega_{(a)}$. $H_{(max)}$ is integral (even at the vertex of $\hat{\Omega}_{(a)}$).

SOME PROPERTIES OF SCHUBERT VARIETIES

PROOF. We are required to prove that the element $p_{(max)}$ is prime in $R_{(a)}$. To see this, take the polynomial ring $k [\overline{X}_{ij}]_{(a)}$ where (the non-zero \overline{X}_{ij} 's being indeterminates)

$$\overline{X}_{ij} = 0 \text{ for } \begin{cases} j < a_i, \ 1 \leq i \leq d \\ j \geq n - d + 1, \ i = 1 \\ j > n - d + i, \ 2 \leq i \leq d \end{cases}$$

Let $\overline{R}_{(a)}$ denote the subring of this polynomial ring generated by the $d \times d$ minors $\overline{p}_{(i)}$ of the matrix (\overline{X}_{ij}) . Note that $\overline{p}_{(i)} = 0$ if and only $(i) \in S_{(a)}$ or $(i) = (\max)$. It is clear that we have a natural surjective homomorphism of rings $f: R_{(a)} \rightarrow \overline{R}_{(a)}$ defined by $p_{(i)} \longrightarrow \overline{p}_{(i)}$. Now proceeding exactly as in the proof of the basis theorem for $\Omega_{(a)}$ (cf. [10], Theorem 4.1, p. 155), it is easy to prove that the images under f of the standard monomials in $R_{(a)}$ whose last factors are $\neq p_{(\max)}$ form a vector space basis for $\overline{R}_{(a)}$. Consequently, we get that the kernel of f is precisely the principal ideal $(p_{(\max)})$, hence the result.

REMARKS 3.2 (i) The affine open set $p_{(\max)} \neq 0$ in $G_{d,n}$ is simply the big open cell in the opposite cellular decomposition of $G_{d,n}$ and its coordinate ring, namely $R/(1 - p_{(\max)})R$, can be canonically identified with the polynomial ring $k[X_{ij}]$ with the specialisation that

$$X_{in-d+t} = \delta_{it}, \ 1 \leqslant i, t \leqslant d.$$

(ii) We shall see (cf. 7, below) that the open set $p_{(max)} \neq 0$ in $\Omega_{(a)}$ is a determinantal locus and conversely.

(iii) One can study the geometry of the scheme-theoretic intersection of a Schubert variety in one cellular decomposition of $G_{d,n}$ with another in the opposite one. Such a study has been made by Chevalley (in [1]) for an arbitrary G/B. Some of the results proved there admit easy proofs in the case of $G_{d,n}$.

4. Arithmetic Cohen-Macaulay Character. The following theorem has been proved by several authors, Viz., Hochster, Kempf. Laksov etc. We have given two proofs in [10]. Here is another in which we exhibit a canonical system of parameters making a repeated use of Pieri's formula (cf. [10], p. 159).

THEOREM 4.1. Schubert varities are arithmetically Cohen-Macaulay.

PROOF. Let $\Omega = \Omega_{(a)}$ be a Schubert variety of dimension q. In view of the following lemma, it suffices to prove that $\hat{\Omega}$ is Cohen-Macaulay at its vertex.

LEMMA 4.2. Let $W \subseteq \mathbf{P}$ be a closed subscheme. Then \widehat{W} is Cohen-Macaulay if and only if \widehat{W} is Cohen-Macaulay at its vertex.

PROOF. Suppose (0) is a Cohen-Macaulay point of \widehat{W} . By [3], 12.1.1, p. 174, \widehat{W} is Cohen-Macaulay in a neighbourhood, say U_0 of (0). It is clear that each fibre of the natural projection $p: \widehat{W} - \{(0)\} \rightarrow W$ meets U_0 . But these fibres are simply the \mathbf{G}_m — orbits in $\widehat{W} - \{(0)\}$, and hence \widehat{W} is Cohen-Macaulay at each point of $p^{-1}(x)$ for all $x \in W$. This proves the Lemma.

Proof of the theorem (continued). Let $S_{j, j} = 0, ..., q$, denote the subsets of S defined as follows:

$$S_{i} = \{(b) \in S/(a) \leq (b) \text{ and } \sum_{i=1}^{d} (b_{i} - a_{i}) = j\}$$

Clearly $S_0 = \{(a)\}$. Since $q = \sum (n - a_i) - \frac{1}{2} d(d - 1)$ (by the dimension formula), it follows that $S_{q-1} = \{(n - d, n - d + 2, \ldots n)\}$ and $S_q = \{\max\}\}$. Let $f_j = \sum_{\substack{(1) \in S_j \\ (1) \in S_j}} p_{(1)}, j = 0, \ldots, q$.

Claim: f_0, \ldots, f_q , is the required system of parameters for $\hat{\Omega}$ at its vertex.

To see this, first note the following. Let $\Omega' \subset \Omega$ be a Schubert variety of dimension r. Construct f'_0, \ldots, f'_r as above for Ω' . It is easy to see that $f_0, \ldots, f_{q-r-1} \equiv 0 \mod I(\Omega')$ and $f_{q-r+j} \equiv f'_j \mod I(\Omega')$ for j = 0, \ldots, r , where $I(\Omega')$ is the ideal defining Ω' in Ω .

Now the rest of the proof is the same as our second proof in [10]. p. 170.

5. Arithmetic Normality.

THEOREM 5.1. Schubert varieties are arithmetically normal.

PROOF. Let $\Omega = \Omega_{(a)}$ be a Schubert variety. Since $\hat{\Omega}$ is Cohen-Macaulay, it suffices to prove that the singular locus, say Z_0 of Ω is of codimension ≥ 2 in Ω . We know that Z_0 is a union of some of the Schubert varieties contained in Ω , and so it suffices to show that none of the codimension 1 Schubert varieties, say $\Omega_1, \ldots, \Omega_p$ in Ω is contained in Z_0 . Let I_i be the ideal defining Ω_i in Ω , $1 \leq i \leq p$. Recall that, by Pieri's formula, we have in the ring $R_{(a)}$

$$(p_{(a)}) = \bigcap_{i=1}^{p} I_i$$

This shows that, if x_i is the generic point of Ω_i , the local ring $\mathcal{O}_{\Omega_i x_i}$ is a discrete valuation ring (whose maximal ideal is generated by $p_{(a)}$), and hence $x_i \notin \mathbb{Z}_0$ for any *i*. Hence the result.

6. Picard group of Schubert Varieties.

THEOREM 6.1. The Picard group of a non-trivial Schubert variety is \mathbb{Z} and is generated by the class of L.

PROOF. Let $\Omega = \Omega_{(a)}$ be a Schubert variety of dimension $q \ge 1$. We prove the result by induction on q. For $q \le 2$, by Corollary 1.2 above, Ω is a projective line or plane and so the result follows. Assume that $q \ge 3$.

Let *H* be the hyper-plane in **P** whose equation is $P_{(a)} = 0$. By Pieri's formula, we know that $Z = \Omega$. *H* is a union of the Schubert varieties Ω_i , $1 \le i \le p$ of codimension 1 in Ω . Hence by the induction hypothesis, the theorem is true for the components of *Z*. Now we make the

CLAIM A: Pic Z = Z and is generated by the class of L.

To see this, we proceed by induction on p, the number of components of Z. We can assume $p \ge 2$. As in [10] p. 164, write

$$X = \bigcup_{i=1}^{p-1} \Omega_i, \ Y = \Omega_p \text{ and } Z' = X \cap Y.$$

By induction on p and q, it follows that the Picard groups of X, Y and Z' are Z and are generated by L. Note that dim $Z' = q - 2 \ge 1$). Now look at the sequence of groups:

(*)
$$0 \longrightarrow \operatorname{Pic} Z \xrightarrow{\varphi} \operatorname{Pic} X \operatorname{Pic} Y \xrightarrow{\psi} \operatorname{Pic} Z' \longrightarrow 0$$

where φ is the restriction map and ψ takes (L^r, L^s) to L^{r+s} . Now Claim A is a consequence of the

CLAIM B: The sequence (*) is exact.

Clearly ψ is surjective and Im $\varphi = \text{Ker }\psi$. To see φ is injective: recall that we have an exact sequence of \mathcal{O}_Z -modules (cf. [10], p. 165)

 $(**) \qquad 0 \to \mathcal{O}_Z \to \mathcal{O}_X \oplus \mathcal{O}_Y \to \mathcal{O}_{Z'} \to 0$

Let *M* be a line bundle on *Z* whose class is in Ker φ . Now (**) induces an exact sequence

 $0 \to M \to M \mid_X \oplus M \mid_Y \to M \mid_{Z'} \to 0$

i.e., the sequence

 $0 \to M \to \mathcal{O}_X \oplus \mathcal{O}_Y \to \mathcal{O}_{Z'} \to 0$

is exact. Since X, Y and Z' are connected projective schemes, we get an exact sequence of vector spaces

 $0 \to H^{\circ}(Z, M) \to k \oplus k \to k \to 0$

This gives that $H^{\circ}(Z, M) \approx k$. Similarly, replacing M by M^{-1} , we get that $H^{\circ}(Z, M^{-1}) \approx k$. But this is possible only if $M \approx \mathcal{O}_Z$. Hence Claim B is proved.

Now the theorem follows from Claim A and the final

CLAIM C: The natural restriction map $Pic \Omega \rightarrow Pic Z$ is injective (and hence an isomorphism).

To see this, we need the following

THEOREM 6.2. (Grothendieck cf. [2], Cor. 3.6, Exp. XII, p. 153)). Let T be a projective scheme (over k) of dimension ≥ 3 . Let $\mathcal{O}_T(1)$ be an ample line bundle on T, and let t be a section of $\mathcal{O}_T(1)$ which is \mathcal{O}_T -regular. Let T_0 be the divisor of the zeros of t. Assume that T has depth ≥ 2 at each of its closed points and that $H^1(T_0, \mathcal{O}_{T_0}(r)) = 0$ for r < 0. Then for every open neighbourhood U of T_0 , the natural map Pic $U \rightarrow Pic T_0$ is injective (in particular, Pic $T \rightarrow Pic T_0$ is injective).

The hypothesis of the theorem is satisfied for $T = \Omega$, $\mathcal{O}_T(1) = L$, $t = p_{(a)}$ and $T_0 = Z$ (in view of Theorem 4.1 above, and the vanishing theorems for Z (cf. [10], Step A. p. 164)). This proves Claim C and hence also the theorem.

139

7. Determinantal Loci. Definition 7.1. Let $1 \le k \le d \le n$ be fixed integers. Let $0 \le a_1 < \ldots < a_k = n$ be a sequence of integers. Let $\{U_{ij}\}$, $1 \le i \le d, 1 \le j \le n$, be a $d \times n$ matrix of indeterminates over the field k, and let $k[U_{ij}]$ be the polynomial ring. Let $J_{a_1 \cdots a_k}(d, n)$ denote the ideal in $k[U_{ij}]$ generated by the $t \times t$ minors of the $d \times a_t$ submatrix $(U_{ij}), 1 \le i \le d, 1 \le j \le a_t$ for all $t = 1, \ldots, k$. Then the subscheme of the affine space Spec $(k[U_{ij}])$ defined by the ideal $J_{a_1 \cdots a_k}(d, n)$ is called a determinantal locus, and is denoted by $D_{a_1 \cdots a_k}(d, n)$. Since no confusion is likely, we write $J_k(d, n)$ for the case when $a_t = t - 1, 1 \le t \le k - 1, a_k = n$. The corresponding determinantal locus, denoted by $D_k(d, n)$. is simply the locus of $k \times k$ minors of the matrix (U_{ij}) .

Denote by $D_{a_1\cdots a_k}^+(d, n)$ the subscheme of the projective space Proj $(k[U_{ij}])$ defined by the (homogeneous) ideal $J_{a_1\cdots a_k}(d, n)$. We call $D_{a_1\cdots a_k}^+(d, n)$ the projective determinantal locus. By definition, $D_{a_1\cdots a_k}(d, n)$ is the cone over $D_{a_1\cdots a_k}^+(d, n)$. We will continue to denote the vertex of $D_{a_1\cdots a_k}(d, n)$ by (0).

REMARK. 7.2. The projective determinantal locus $D_2^+(d, n)$ is nonsingular (and hence the vertex of $D_2(d, n)$ is an isolated singularity unless d = 1).

To see this. consider the Segre imbedding

$$s: \mathbf{P}_k^{d-1} \times \mathbf{P}_k^{n-1} \to \mathbf{P}_k^{dn-1}$$

Recall that the image of s is an intersection of quadrics in $\mathbf{P}_k^{dn-1} = \operatorname{Proj}(k [U_{ij}])$ and the equations of these quadrics are nothing but the 2×2 minors of the matrix (U_{ij}) . In other words, the image of s is simply $D_2^+(d n)$ and hence the assertion.

The following theorem establishes the connection between determinantal loci and Schubert varieties. Our treatment is based on an observation due to Hochster (cf. [4]. Corollary (3.13). p. 53). We bring out the underlying idea therein. Interpreted properly, we find that the determinantal loci are nothing but the scheme-theoretic intersection of Schubert varieties with the big open cell in the opposite cellular decomposition of the Grassmann variety. Kleiman (cf. [7] 4.8, p. 424) has done this for the class of the determinantal loci $D_k(d, n)$. C. MUŠILI

THEOREM 7.3. The determinantal locus $Da_{1...a_{k}}(d, n)$ is canonically isomorphic to the standard affine open subset $p_{(n+1..., n+d)} = p_{(\max)} \neq 0$ of the Schubert variety $\Omega_{(b)}$ in $G_{d,n+d}$ where $(b) = (b_{1}, \ldots, b_{d})$ is defined by $b_{i} = a_{i} + 1$ for $1 \leq i \leq k$ and $b_{j} = n + j - k + 1$ for $k \leq j \leq d$. Consequently, $Da_{1...a_{k}}(d, n)$ is

- ... integral (i.e., the ideal $J_{a_1\cdots a_k}(d, n)$ is prime)
- ... Cohen-Macaulay (i.e., $J_{a_1\cdots a_k}(d, n)$ is "perfect")

...normal

 \ldots of dimension = dim $\Omega_{(b)}$

$$= \frac{1}{2}(k-1)(2n+2d-k) - \sum_{i=1}^{k-1} a_i$$

PROOF. For convenience, write $J = Ja_{1}\cdots a_{k}(d, n)$, $D = Da_{1}\cdots a_{k}(d, n)$ and $\Omega = \Omega_{(b)}$ with (b) as in the Theorem. Write $I = I(S_{(b)})$, the ideal of Ω and $A = k[U_{ij}]/J$, the coordinate ring of D. Let B = R/I be the coordinate ring of Ω where R is the coordinate ring of G_{d-n+d} . Recall that R is identified with the subring of $k[X_{ij}]$. $1 \le i \le d$, $1 \le j \le n+d$, generated by the $d \times d$ minors of the matrix (X_{ij}) .

We are to prove that A is isomorphic to $B' = B[p_{(max)}^{-1}]_0$, the coordinate ring of the affine open subset $p_{(max)} \neq 0$ of Ω . We have

$$B' = B/(1 - p_{(max)})B$$

= $R/(I + (1 - p_{(max)})R)$
= $R/(1 - p_{(max)})R/(I + (1 - p_{max})R)/(1 - p_{(max)})R$

Now look at $R/(1 - p_{(\max x)})R = R [p_{(\max x)}^{p-1}]_0$ which is the coordinate ring of the big open cell in the opposite cellu'ar decomposition of $G_{d, n+d}$. By Remark 3.2 (i) above, we know that $R/(1 - p_{(\max x)})R$ is canonically identified with the polynomial ring $k[X_{ij}]$, $1 \le i, \le d, 1 \le j \le n$ (i.e. with the specialisation $X_{i, n+t} = \delta_{it}$, $1 \le i, t \le d$). Under this identification, it is clear that $p_{(\max x)} = 1$, $R/(1 - p_{(\max x)})R \approx k [U_{ij}]$ and Icorresponds precisely to the ideal J. Thus $B' \approx A$ as required. The other assertions are immediate since D is open in Ω and Ω has those properties.

REMARKS. (1) It is easy to see that the vertex of D corresponds to the point x_0 of Ω where $\{x_0\} = \Omega_{(\max)}$ is the point Schubert variety.

SOME PROPERTIES OF SCHUBERT VARIETIES

141

(2) While the determinantal locus D inherits all the "good" properties of Ω , it is not clear a priori if Ω reflects the good properties of D(except normality and non-singularity). However, we will see that the property being factorial is well behaved (even for the cone $\hat{\Omega}$) (cf. Theorem 8.1, below).

(3) Suppose Ω is a Schubert variety in G_{ris} , and D is the affine open subset $p_{(max)} \neq 0$ in Ω , then D does not really correspond to a determinantal locus as defined above. However, one can generalise the definition of a determinantal locus so as to include these cases. In other words, D is a "true" determinantal locus. But what is useful is to note that this affine open subset is a cone (i.e., its coordinate ring is graded) and the above remarks apply. In other words, Schubert varieties are cones in a neighbourhood of x_0 (with x_0 being the vertex). (We shall use only this fact in the sequel).

It is easy to see that the first q elements of the canonical system of parameters f_0, \ldots, f_2 ($q = \dim \Omega$) at the vertex of $\hat{\Omega}$ (constructed in §4, above) go down to a system of parameters at the vertex of D.

(4) Determinantal loci, being cones and at the some time open subvarieties in Schubert varieties in a particular way, admit a good algebrogeometric study as for the Schubert varieties.

(5) A determinantal locus of dimension ≤ 2 is an affine space. (This is so because the corresponding Schubert varieties are linear (Corollary 1.2, above)).

8. Characterisation of factorial Schubert varieties.

THEOREM 8.1. Let $\Omega_{(a)}$ be a Schubert variety in $G_{d,n}$ and let $D_{(a)}$ be the determinantal locus (i.e., the affine open subset $p_{(\max)} \neq 0$) in $\Omega_{(a)}$. Then the following statements are equivalent:

- (i) $\Omega_{(a)}$ is arithmetically factorial (i.e., the ring $R_{(a)}$ is a UFD).
- (ii) There exists a unique Schubert variety of codimension 1 in $\Omega_{(a)}$.
- (iii) The element $p_{(a)}$ is prime in $R_{(a)}$.
- (iv) $(a) = (a_1, \ldots, c_d)$ is constituted by either one or at most two segments of successive integers according $cs a_d \leq n$.

- (v)* $\Omega_{(a)}$ is isomorphic to the Grassmann variety $G_{r,s}$ for a suitable r and s.
- (vi) $\Omega_{(a)}$ is non-singular
- (vii) $\Omega_{(a)}$ is (locally) factorial
- (viii) $D_{(a)}$ is factorial (at its vertex).

PROOF. Let $\Omega_1, \ldots, \Omega_p$ be all the Schubert varieties of codimension 1 in $\Omega_{(a)}$. Let I_i be the ideals defining the Ω_i 's in $\Omega_{(a)}$. Recall that the ideals I_i are of height 1 in $R_{(a)}$ and that the element $p_{(a)}$ is irreducible (cf. Remark 2.1 above). Further, by Pieri's formula we have

$$(p_{(a)}) = \bigcap_{i=1}^{p} I_i$$

With these observations, it is trivial to see that $(i) \Rightarrow (ii) \Rightarrow (iii)$.

Now assume (iii) is true. If (iv) were not true, there would exist (b), $(c) \in S$, such that $(b) \neq (c)$, $(a) \leq (b)$, $(a) \leq (c)$ and

$$\sum_{i=1}^{d} (b_i - a_i) = 1 = \sum_{i=1}^{d} (c_i - a_i)$$

This shows that the ideals $I(S_{(b)})$ and $I(S_{(c)})$ (corresponding to the Schubert varieties $\Omega_{(b)}$ and $\Omega_{(c)}$ of codimension 1 $\Omega_{(a)}$) are distinct prime ideals of height 1 in $R_{(a)}$ and contain the prime ideal $(p_{(a)})$. This is clearly a contradiction. Hence (iv) holds.

By Remarks 1.1, (iv) \Rightarrow (v) is immediate. It is obvious that (v) \Rightarrow (vi) \Rightarrow (vii) \Rightarrow (viii). Finally, (viii) \Rightarrow (i):

First look at the following.

LEMMA 8.2. (cf. Samuel [12], Prop. 7.4, p. 25). Let $X \subset \mathbf{P}$ be a closed subscheme and A its homogeneous coordinate ring (so that $\hat{X} = \text{Spec } A$). (Assume that \hat{X} is normal). Then \hat{X} is factorial at its vertex if and only if A is c UFD.

Since $D_{(a)}$ is normal and a cone (cf. Theorem 7.3 and Remark 7.4 (3) above), by hypothesis and the above lemma, we get that the coordinate ring $\dot{R}_{(a)} = R_{(a)} [p_{(\max)}^{-1}]_0$ of $D_{(a)}$ is a UFD. But then $R_{(a)} [p_{(\max)}^{-1}] = \dot{R}_{(a)}$ $[p_{(\max)}^{-1}]_1$ is a UFD because $p_{(\max)}$ is transcendenta! over $\dot{R}_{(a)}$. By Pro-

^{*}I am grateful to R.C. Cowsik who has drawn my attention to this

position 3.1 above, we know that $p_{(max)}$ is a prime element in $R_{(a)}$. Hence it follows that $R_{(a)}$ is a UFD. Thus (i) holds. This completes the proof of the Theorem.

From the statement (iv) of the above Theorem, it is easy to see the following.

COROLLARY 8 3. (1) The number of non-singular Schubert varieties in (a fixed cellular decomposition of) $G_{d,n}$ is equal to $1 + \dim G_{d,n} = 1 + d (n - d)$.

(2) The codimension of a non-singular Schubert variety ($\neq G_{d_n}$) is at least equal to min (d, n - d).

(3) $G_{d,n}$ is isomorphic to the projective space $\mathbf{P}_k^{d(n-d)}$ \Leftrightarrow the non-singular Schubert varieties in $G_{d,n}$ form a chain \Leftrightarrow the Schubert variety of codimension 1 in $G_{d,n}$ is non singular $\Leftrightarrow d = 1$ or n-1.

COROLLARY 8.4. The vertex of a determinantal locus D is factorial if cnd only if D is isomorphic to an affine space.

PROOF. If the vertex of D is factorial, D is already non-singular because D is open in a Grassmann variety (by the above theorem). But then D, being a cone, is non-singular at its vertex implies it is an affine space.

PARAFACTORIALITY. For the definition of a parafactorial couple (X, Y), (see [2] Exp. XI, p. 126 or [3], 21.13, p. 313). Note that for a normal projective variety $X \subset \mathbf{P}$, if X is arithmetically normal (i.e., depth₍₀₎ $\hat{X} \ge 2$), Pic $X = \mathbf{Z}$ (and generated by the class of $\mathcal{O}_{\mathbf{X}}(1)$) is equivalent to saying that $(\hat{X}, (0))$ is a parafactorial couple. Thus for a non-trivial Schubert variety Ω by Theorems 5.1 and 6.1 above, we find that $\hat{\Omega}$, is parafactorial at its vertex.

If D is a determinantal locus of dimension ≥ 2 , it is natural to ask if D is parafactorial at its vertex. The answer is no because D is normal but in general Pic $D^+ \ne \mathbb{Z}$, for example Pic $D_2^+(d,n) = \mathbb{Z} \oplus \mathbb{Z}$ (cf. Remark 7.2 above).

If the vertex (0) of D is a singularity of D, then (0) remains non-factorial by Corollary 8.4, above. Now we have the following.

Corollary 8.5. If the vertex (0) of a determinantal locus D is the only non-factorial point of D, then D is not parafactorial at (0) (i.e. $Pic D^+ \neq Z$).

PROOF. By Remark 7.4 (5) above, and hypothesis, we get that dim $D \ge 3$. But then if (D, (0)) were a parafactorial couple, by [2], Cor. 3.10, p. 130, we would get that (0) is a factorial point of D which is a contradiction.

Errata to "Postulation formula for Schubert varieties" (See [10] under the references).

On page 161, the statement of Proposition 1.2 should read as "... the local rings $\mathcal{O}_{\hat{Y}_{i,(0)}}$ are Cohen-Macaulay and have dimensions $= d_i, \ldots$ " and in its proof, (i) should read as "Suppose *R* is a Cohen-Macaulay noetherian ..." On page 168, lines 2, 3 and 4 from top must be modified as follows: "By assertions (1) and (2) of the theorem for *X*, *Y* and *Z'*, and Proposition 1.1, we get that the local rings $R_{\mathbf{x},(0)}$, $R_{Y,(0)}$ and $R_{Z',(0)}$ are Cohen-Macaulay. Now by ...".

REFERENCES

- 1. C.C. CHEVALLEY: Sur les décompositions cellulaires des espaces G/B (unpublished).
- 2. A. GROTHENDIECK: Cohomologie locale des faisceaux cohèrents et théorèmes de Lefschet z locaux et globaux (SGA2), North-Holland Publishing Company, Amsterdam (1968).
- 3. A. GROTHENDIECK AND J. DIEUDONNE: Éléments de Goémètrie Algébrique, EGA IV, Publ. Math. IHES, Nos. 28 and 32 (1966-67).
- 4. M. HOCHSTER: Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay, J. Algebra, Vol. 25 (1973), pp. 40-57.
- 5. M. HOCHSTER AND J.A. EAGON: Cohen-Macaulay rings, invariant theory, and the generic perfection of the determinantal loci, *Amer. J. Maths.*, Vol. XCIII (1971), pp. 1020-58.
- 6. G. KEMPF: Schubert methods with an application to algebraic curves, Stichting mathematisch centrum, Amsterdam (1971).
- S L. KLEIMAN AND J. LANDOLFI: Geometry and deformation of special Schubert varieties, Composito Mathematica, Vol. 23 (1971), pp. 407-34.
- 8. D. LAKSOV: The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Mathematica, Vol. 129 (1972), pp. 1-9.
- 9. M. P. MURTHY: A note on factorial rings, Arch, der Math., Vol. XV (1964), pp. 418-20.

SOME PROPERTIES OF SCHUBERT VARIETIES

- C. MUSILI: Postulation formula for Schubert varieties, J. Indian Math. Soc., Vol. 36 (1972), pp. 143-71.
- 11. ———: Thesis, Bombay, 1973.
- 12. P. SAMUEL: Lectures on Unique Factorisation Domains, Tata Inst. Lecture notes, Bombay (1964).
- 13. L. SZPIRO: Travaux de Kempf, Kleiman, Laksov, sur les diviseurs exceptionnels, Séminaire N. Bourbaki, Exp. 417, 24 ème année, 1971-22.

Tata Institute of Fundamental Research Homi Bhabha Road Colaba, Bombay 400005.