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SOME PROPERTIES OF SCHUBERT VARIETIES
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Introduction. This paper is a continuation of our carlier paper [10].
With notations as in [10] (some of which are recalled in 1 and 2, below),
we prove the following

1. THEOREM (6.1, below). The Picard group of a non-trivial Schubert
variety Q in the Grassmanit variety Gy, is Z. and is generated by the class

of Oq (D).

In fact, our method of proof of the vanishing theorems for Q (and of
the above theorem) yields the following

2. TdeorReM. Let W C Gyn be anequidimensional closed subscheme
whose irreducible components are Schubert varieties. Then (i) W is reduced
(if) Vanishing theorems hold for W (iii) Postulation formula holdsfor W
(iv) W is arithmetically Cohen-Macaulay and (v) Pic W =Z if dim W 2> 1.

We then establish the precise relationship that exists between determi-
nental loci and Schubert varieties (cf. 3 and 7, below). We prove the

3. THEOREM. (7.3, below). Determinantal loci cre canonically isomor-
phic to the scheme-theoretic intersection of Schubert varieties with the big
open cell in the opposite cellular decomposition of Gg,p.

As an obvious consequence of this theorem, it follows that the deter-
minantal loci are integral, Cohen-Macaulay and normal. A useful fact
to be noted is that Schubert varieties are cones in a neighbourhood of
their distinguished point, namely the point Schubert variety (cf. Remark
7.4 (1 and 3), below). With this observation we prove the following.

4. THEOREM (8.1, below). Let Q be a Schubert variety in G, and D
be the determinantal locus in Q. Then the following statements are
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132 C. MUSILI

equivalent: (i) Q is arithmetically factorial (ii) there exists a unique Schubert
variety of codimension 1in Q (iii) Q is non-singular (in fact, isomorphic to a
Grassmann variety) (iv) Q is fectorial (v) D is factorial (at its vertex).

It iseasy to recognise the non-singular Schubert varieties in G4,,. By a
result of Murthy ([9], p. 419), the non-singular Schubert varieties and
hence also the codimension 1 Schubert varietics contained in them are
arithmetically Gorenstein.

5. Several proofs are now available for the arithmetic (normality and)
Cohen-Macaulay nature of Schubert varieties. Here we include another
proof (cf. 4.1 below) in which we construct a canonical system of para-
meters at the vertex of &. This system induces also a system of parameters
at the vertex of the determinantal locus that Q contains (cf. Remark 7.4
(3), telow). Finally, we point out (in 5.1, below) that the arithmetic
normality of Q is an immediate consequence of Pieri’s formula.

I am grateful to Professor C.S. Seshadri for many helpful suggestions
and encouragemeit.

1. Notation and Terminology. Let ¥ be an n-dimensional (ﬁ_nite) vector
space over an algebraically closed field & of arbitrary characteristic. For
a fixed integer d, 1 <d<n, G,, denotes the Grassmann variety of
d-dimensional linear subspaces of V. Let P=P(A¥%V)) denote the
projective space in which Gy, is canonically imbedded.

Let L denote the hyper-plane bundle on P as well as its restriction to all
subvarieties of P. For any subvariety X of P, X denotes the cone over
X, and (0) denotes the vertex of X.

We fix a celullar decomposition of Gz ([10], 4, p. 147). The
Schubert cells are parametrised by the set S={(a)=(ay, ..., a3 |
I<a, < ... <as<n}. For (@) € S, Uy, denotes the Schubert cell, and
Qqy = Zariski closure of Uy in Gg4,, (with the canonical reduced scheme
structure) denotes the corresponding Schubert variety.

For the standard partial order on S, namely, (@) < (b) if a; < by,
1<i<d; we have (¢) < (b) if and only if Q) D Q) ([10], 1, p. 151).
We write (min) = (1,...,d) and (max) =(n —d -+ 1, ..., n) which are
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the (unique) minimal and maximal elements of S.  We have Quin) = Gasn
and Quuax) == {X,} the point Schubert variety.

Fix a basise,, ..., e, for ¥, and identify V¥=V® ... @ V, (d copies)
with the set of d X n matrices {(x;)/x,; €k, 1 <i<<d, 1 <j<n}. For
(@) € S, let D), Ciay and C’,, denote the subvarieties of the affine space
V4 defined as follows:

Dy ={(xs)) € V¥|x;; =0forj <a;, 1 <i<d, 1<j<n}
C(a) == {(Xii) € D(a) l Xigy = L, 1<ig d}
Coy={(x;) € Cloy| Xga, =0 fori <k, 1 < i, k < d}.

(Note that D(,,, C(,yand C’(,, are affine spaces). Let =:Vé— A4V) be
the canonical morphism defined by (v, ..., V)l b A ... Avy v, E V.
It is easy to sce that = (D) = ﬁ(a,, T (Cay) = = (C’y)) = Ueyy and that
7 C' gy X Uy is an isomorphism.

REMARK 1.1. When we want to study the properties of a given
Schubert variety €,, or of those contained therein, we can assume a; = 1
and a, < .

For supposea; =a-+b;,a>0,1 <i<<d Thenitiseasy to seethat
Q. is canonically isomorphic to the Schubert variety Q,, in the
Grassmannian Gy, ,—, associated to a vector space W of dimensionn — a.
In fact, we can choose W to be the subspace of V spanned by {e;},
a+ 1 <i<n Thuswecanassume g, = 1. Similarlyif q;, =n, we can
identify Q,, withQq,, .., o,» In Gr, p—gyr for a suitable r such that r < d
and a, <n —d 4 r. In this case W can be choosen to be an (n — d + r)-
dimensional quotient space of V.

COROLLARY 1.2. The Schubert varieties of dimension < 2 are isomorphic
to the projectivespaces Py, r < 2.

For, if O, is of dimension < 2, it fol'lows from the dimension formula
(cf. [10], Prop. 5.2, p. 149) that (a) is equal to one of the following
clements of §, namely, (max), n—d,n—d+42,...,n, n—d—1,
n—d4 2, ...,mor(n—d,n—d+ 1, ..., nassertion follows in view ol
the above remark.
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2. The homogeneous coordinate rings. Let X;; denote the coordinate
functions on the affine space V4. For (a) € S, the coordinate ring of
the affine space D, is the polynomial ring K [X},]. with X, =0 for
j<a, 1<<i<d, 1 <j<n LetR, denote the homogeneous coordinate
ring of Q. Recall that R, is identified with the subring of k [X;;](a),
generated by the {p.)}, (i) € S, where

Note that p(;, % 0 if and only if (a) < (¥).

ReMARK 2.1. Every non-zero p; in R, is an irreducible element, i.e,
the ideal (p(;)) is maximal among the principal ideals in R,,. (This is clear
because R, is a graded domain generated by the p;’s, but the p;)’s
are of least degree.)

We write R = Ry for the homogeneous coordinate ring of Gg,,.
Recall that the ideal defining Q,, in Gy,, is the ideal I(S(,)) in R generated
by the {ps}, () € Siay where S, = {(i) € S/i; < a; for some < d}.
That is to say R &~ R/I(S(a)) (cf. [10], 4, p. 154).

3. Opposite cellular decomposition of G,;,,. The cellular decomposition
of Gy, obtained by taking the orbits under the Borel subgroup of
SL(n, k) consisting of the lower triangular matrices is called the opposite
cellular decomposition of G4,, (opposite to the one we have fixed). Let
~~denote the cells in this decomposition. For all (a), (b)) € S, we have
Q' 2y C Q' if and only if (a) < (b). Consequently, Q' maxy = G4, and
the section of Gg,, with the hyper-plane Hmay), whose equation is
Pimax) == 0, is the codimension 1 Schubert variety in this decomposition.
For our future use, we prove the following

ProprosITION 3.1.  The set-theoretic intersection of any Schubert variety
Qay with the codimension 1 Schubert variety in the opposite cellular decom-
position is actually scheme-theoretic and is reduced and irreducible, i.e.;

Q.ay.  Huaxy Is integral (even at the vertex ofﬁ(a,).
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PrOOF. We are required to prove that the element pmaz) is prime in

R,y To seethis, take the polynomial ring k& [X;;],) where (the non-zero
X,;’s being indeterminates)
_ ] < a;, 1 < l< d
Xi,»:Ofor ]2”'—(1—*-1,[:1
Jon-—-d+12<iLd,

Let R, denote the subring of this polynomial ring gencrated by the
d x d minors p, of the matrix (X;;). Note that p;, =0 if and only
(i) € Sy or (1) = (max). Itisclear that we havea natural surjective
homomorphism of rings f: R, —> Ry defined by piiy—s pri).  Now
proceeding exactly as in the proof of the basis theorem for €,y (cf. [10].
Theorem 4.1, p. 155), it is easy to prove that the images under f of the
standard monomials in R, whose last factors are 7~ pmax) form a vector
space basis for 1_?(0). Consequently, we get that the kernel of fis pre-
cisely the principal ideal ( p(mas)). hence the result.

ReMARKS 3.2 (i) The affine open set pimaxy 7 0 in Gy, Is simply the
big open cell in the opposite cellular decomposition of Gy, and its
coordinate ring, namely R/(1 — pmag)R, can ke canonically identified
with the polynomial ring k [X;;] with the specialisation that

Xin—gre =8 1 <L 1< d.

(i) We shall see (cf. 7, below) that the open set pouar) 7 0 in Qg is

a determinantal locus and coaversely.

(i) Onc can study the geometry of the scheme-thcoretic intersection
of a Schubert variety in one cellular decomposition of Gg,, with another
in the opposite one. Such a study has been made by Chevalley (in [1])
for an arbitrary G/B. Some of the results proved therc admit easy

proofs in the casc of Gy, .

4. Arithmetic Cohen-Macaulay Character. The following theorem has
been proved by several authors, Viz., Hochster, Kempf, Laksovetc. We
have given two proofs in{10). Here is another in which we cxhibit a
canonical system of parameters making a repeated use of Pieri’s formula

(cf. [10]. p. 159).
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THEOREM 4.1.  Schubert varities are arithmetically Cohen-Macaulay.

Proor. Let Q = Q,, bea Schubert variety of dimensionq. In view

of the foliowing lemma, it suffices to prove that Q is Cohen-Macaulay at
its vertex.

A
Lemma 4.2, Let W C P be a closed subscheme. Then W s

~
Cohen-Macaulay if and only if W is Cohen-Macaulay at its vertex.

A
Proor. Suppose (0) is a Cohen-Macaulay point of W. By [3], 12.1.1,
A
p. 174, W is Cohen-Macaulay in a neighbourhood, say U, of (0). Itis
~
clear that each fibre of the natural projection p: W — {(0)} - W meets U,,.

N\
But these fibres are simply the G,, — orbits in/ﬁ/— {(0)}, and hence W
is Cohen-Macaulay at each point of p-!(x) for all x € W. This proves
the Lemma.

Proof of the theorem (continued). Let S;, ; =0, ..., g, denote the subsets
of S dcfined as follows:

d
S, ={(b) € Sl(a) < (B) and Y (b —a) = j}.

=1

Clearly S, = {(a)}. Since g=2(n—a;)— 3 d(d — 1) (by the dimension

formula), it follows that S,.,={n—d, n—d+2, ...n)} and
S, = {max)}. Letf,=2p..j=0,...,¢q

1) ¢ S_,-
Claim: fy. ..., [y is the required system of parameters for O at its vertex.

To see this, first note the following. Let Q' C Q be a Schubert variety
of dimension r. Constructf.')‘ e f; asabove for Q'. Itis easy tosee
that  fy, ..., oo =0 mod I(Q') and fy_,4; = f; mod I (Q') for j=0,
..., r, where I(Q') is the ideal defining Q' in Q.

Now the rest of the proof is the same as our second proof in [10]. p. 170.

5. Arithmetic Normality.

THEOREM 5.1. Schubert varieties are arithmetically normal.
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ProoF. Let Q=Q, be a ‘Schubert varicty. Since & s
Cohen-Macaulay, it suffices to prove that the singular locus, say Z, of Q
is of codimension > 2 in Q. We know that Z; is a union of some of the
Schubert varieties contained in €2, and so it suffices to show that none of
the codimension 1 Schubert varieties, say £, ..., Q, in Qis contained in
Z,. Let I, be the ideal defining Q;in Q, | <<i<{ p. Recall that, by Pieri’s
formula, we have in the ring R ;)

p
(p(a)) =i011‘

This shows that, if x; is the generic point of Q;. the local ring Oﬂ,x’. is a
discrete valuation ring (whose maximal ideal is generated by p,,), and
henee x; @€ Z, for any i. Hence the result.

6. Dicard group of Schubert Varieties.

THLOREM 6.1.  The Picard group of a non-trivial Schubert variety is Z.
and is generated by the class of L.

Proor. Let Q = Q,, bea Schubert variety of dimension ¢>1. We
prove the result by induction onq. For ¢ < 2, by Corollary 1.2 above,

Q is o projective line or plane and so the result follows. Assume that
g2 3

Let / be the hyper-planc in P whose equation is P,y = 0. By Pieri’s
formula, we know that Z -= Q. H is a union of the Schubert varieties €,
1 i< p of codimension 1in €. Hence by the induction hypothesis,
the theorem is true for the components of Z.  Now we make the

Cratm A Pic Z = Z and is generated by the class of L.
To see this, we proceed by induction on p, the number of components

of Z. Wecanassumep 2>2. Asin[10]. p. 164, write

—1
X="U0, Y=0,and Z' = X Y.

i=1

By induction on p and ¢, it follows that the Picard groups of X, Y and Z’
are Z and are generated by L. Note that dim Z' =g —2 > 1). Now look
at the sequence of groups:

(*)  0——> Pic Z—=> Pic X Pic ¥ —— Pic Z'—>0
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where ¢ is the restriction map and ¢ takes (L7, L%) to L™*. Now Claim A
is a consequence of the

CLAIM B: The sequence (*) is exact.

Clearly ¢ is surjectiveand Im ¢ = Ker . To see ¢ is injective: recall

that we have an exact sequence of Oz-modules (cf. [10], p. 165)
() 0->0z>0x@®0r—=> 0z —0
Let M bea line bundle on Z whose class is in Ker 9. Now (**) induces
an exact sequence

O>M->Mx®DMly>M|z—->0
i.¢., the sequence

0>M—->0¢®Or—>0z—>0
iscxact. Since X,Y and Z’ are connected projective schemes, we getan
exact sequence of vector spaces

0> HEZ M>k®Dk->k—->0
This gives that H°(Z, M) = k. Similarly, replacing M by M-, we get
that H°(Z, M—') = k. But this is possible only if M=z Hence
Claim B is proved.

Now the theorem follows from Claim A and the final
CrLAm C: The natural restriction map Pic Q — Pic Z is injective (and hence
an isomorphism).

To see this, we need the following

THEOREM 6.2. (Grothendieck cf.[2], Cor. 3.6, Exp. XII, p. 153)). Let
T be a projective scheme (over k) of dimension > 3. Le! Or(1) be an ample
iine bundle on T, end let t be a section of Or(1) which is Or-regular. Let
T, be the divisor of the zeros of t.  Assume that T has depth 2> 2 at each of
its closed points and that H'(Ty, Ory(r)) = 0forr < 0. Then for every
open neighbourhood U of Ty, the natural map Pic U — Pic T, is injective
(in particular, Pic T — Pic Ty is injective).

The hypothesis of the theorem is satisfied for T=Q, Or(1) =L, t = pq
and T,==Z (in view of Theorem 4.1 above, and the vanishing theorems
for Z (cf. {10], Step A. p. 164)). This proves Claim C and hence also
the theorem.
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7. Determinantal Loci. Definition 7.1. Let 1 <k <<{d < nbe fixed inte-
gers. Let 0<C{a, < ... << a,=nbeasequence of integers. Let {U,;},
1<i<d 1<j<n beadx nmatrix of indeterminates over the field
k, and let k[U;;] be the polynomial ring. Let Ja,..o, (d. 1) denote the
ideal in k[U;)] generated by the ¢ X ¢t minors of the d x a, submatrix
U, 1<ig<d 1Ij<aforallt=1,..., k. Then the subscheme of
the affine space Spec (k[U,;]) defined by the ideal Ja,...q; (d, 1) is called a
determinantcl locus, and is denoted by Da,-a;, (d, n). Since no confusion
is likely, we write Ji(d, n) for the case when a,=t— 1,1 <t <<k -1,
a, =n. The corresponding determinantal locus, denoted by D, (d, 1), is
simply the locus of k ¥ k minors of the matrix (U;;).

Denote by Did;-a, (d. n) the subscheme of the projective space Proj
(k[U,;)) defined by the (homogeneous) ideal Ja.a (d, n). We call
D%,...a; (d.n) the projective determinantal locus. By definition, Da,-a; (d. 1)
is the cone over D4, (d,n). We will continue to denote the vertex
of Daya, (d. n) by (0).

Remark. 7.2, The projective determinantal locus D:”(d. n) is non-
singular (and hence the vertex of D,(d, n) is an isolated singularity unless
d=1).

To see this. consider the Segre imbedding
siPi x PR > PP
Recall that the image of s is an intersection of quadrics in Py"™' =
Froj (k [U:;}). and the equations of these quadrics are nothing but the 2 x 2
minors of the matrix (U;). In other words, the image of s is simply
D3 (d n) and hence the assertion.

The following theorem establishes the conncction between determi-
nantal lociand Schubert varieties. Our treatment is based on an obser-
vation due to Hochster (cf. [4]. Corollary (3.13). p. 53). We bring out
the underiying idea therein. Interpreted properly, we find that the
determinantal loci are nothing but the scheme-theoretic intersection of
Schubert varicties with the big open cell in the opposite cellular decom-
position of the Grassmann variety. Kleiman (cf. [7] 4.8, p. 424) has done
this for the class of the determinantal loci D(d, n).
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THEOREM 7.3. The determinantal locus Da, a; (d, n) is canonically
isomorphic to tlie standord affine cpen sibset p(pi.. ntay = Pomaxy 7 0 ¢f
the Schubert variety Quyy in Ggyneqg where (b) = (by.. .., by) is defined by
bi=a;+ 1 for 1<i<k and by=ndj—k+1 for k<j<d
Consequently, Day.. o, (d,n) is
...integral (i.e., the ideal Ja.a; (d, n) is prime)

...Cohen-Macaulay (i.e., Jaq-a, (d, n) is ““perfect™)
..noral
...of dimension = dim Q,

k-1

=W—DQ+2-B - a

i=1

ProoF. For convenience, write J = Jayq, (d,n), D = Da,-q (d, 1) and
Q = Q,, with (b) as in the Theorem. Write I = I(S,;,), the ideal of Q and
A = k[U,]/J, the coordinate ring of D. Let B = R/I be the coordinate
ring of @ where R is the coordinate ricg of Gy neq. Recall that R is
identified with the subring of k[X;;]. 1<i<d 1<j<n+d, generated
by the d X d minors of the matrix (X;;).

We are to prove that A is isomorphic to B’ = B[ p(,,,’ax,]o, the coordinate
ring of the affine open subsct pimaxy = 00f Q. We have
B’ = B[{1 = p(max))B

= R/(I + (1 — p(max))R)

= R/(1 — pmax)) R/ + (1 — pmax)) R)/(1 — Pmaxy)R
Now look at R/(1 — pmax))R = R[plm)o Which is the coordinate ring of
the big open cell in the  opposite cellu'ar decomposition of Gg, g By
Remark 3.2 (i) above, we know that Rf(1 — p(masx,)R is canonically
identified with the polynomial ring A[Xy], 1 <1, <d, 1 <j<<n(.e.
with the specialisation X;, ay: =08, 1 < i, 1< d). Under this identifica-
tion, it is clear that pmesy =1, R/(1 — p(maxy))R=k [Uy,] and I
corresponds precisely to the ideal J. Thus B’ = A as required. The other
assertions are immediate since D is open in Q and Q has those properties.

REMARKs. (1) Itiseasy to see that the vertex of D corresponds to
the point x, of  where {xo} = Qmax, is the point Schubert varicty.
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(2) While the determinantal locus D inherits all the “good” proper-
ties of Q. it is not clear a priori if Q reflects the good properties of D
(except normality and non-singularity). However, we will see that the

property being factorial is well behaved (even forthe cone ﬁ) (cf. Theorem
8.1, below).

(3) Suppose Q is a Schubert variety in G,,,, and D isthe affine open
subset pimax; 7= 0 in Q, then D does not really correspond to a determi-
nantal locus as defined above. However, one can generalise the definition
of a determinantal locus so as to include these cases. In other words,
D is a “true” determinantal locus. But what is useful is to note that this
affine open subset is a cone (i.e., its coordinate ring is graded) and the
above remarks apply. In other words. Schubert varieties are conesin a
neighbourhood of x, (with x, being the vertex). (We shall use only this
fact in the sequel).

It is easy to see that the first ¢ elements of the canonical system of

parameters fo,. .., f; (¢ =dim Q) at the vertex of Q (constructed in §4,
above) go down to a system of parameters at the vertex of D.

(4) Determinartal loci, being cones and at the some time open sub-
varieties in Schubert varieties in & particular way, admit a good algebro-
geometric study as for the Schubert varieties.

(5) A determinantal locus of dimension < 2 is an affine space. (This

is so because the corresponding  Schubert varieties are linear (Corollary
1.2, above)).

8. Characterisation of factorial Schubert varieties.

THLOREM 8.1. Let Q. be a Schubert variety in Gg,, and let Dy, be the
determincntal lecus (i.e., the affine open subset pimax, 7 0) in Qu,. Then
the following statements cre equivalent:

(N Qo is erithmeticelly factoricl (i.e., the ring R,y is a UFD).
(@)  There exists a unique Schubert variety of codimension 1 in Q4.
(iiiy The element p,, is prime in R .

() (@ =(ay,...,cq)is constituted by either one or at most two segments
of successive integers according es ag < n,
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()* Q. is isomorphic to the Grassmann variety G, for a suitable r and s.
(a) Y

) Qs non-singular

(vii) Q) is (locally) factorial

(viii) Dy, is factorial (at its vertex).

ProOF. Let Q,.. ., Q, be all the Schubert varieties of codimension 1
in Q. Let I, be theideals defining the Q; ‘s in Q. Recall that theideals
I; are of height 1 in Ry, and that the element p¢,; is irreducible (cf.
Remark 2.1 above). Further, by Pieri’s formula we have

P
(P@) = N 1
i=1
With these observations, it is trivial to see that (i) = (ii) = (iii).

Now assume (iii) is true. If (iv) were not true, there would exist (),
(¢) € S, such that (b) # (c). (@) < (), (a) < (¢) and

d d
Sti—a)=1=" (c—a)
i=1

i=1
This shows that the ideals I(S.,) and I(S(,) (corresponding to the
Schubert varieties Q) and Q, of codimension 1 £, are distinct prime
ideals of height 1 in Ry, and contain the prime ideal (py). Thisis
clearly a contradiction. Hence (iv) holds.

By Remarks 1.1, (iv) = (v) is immediate. It is obvious that (v)=>
(vi) = (vii) = (viii). Finally, (viii) = (1):

First look at the following.

Lemma 8.2, (cf. Samuel [12), Prop. 7.4, p. 25). Let X C P be a clysed
subscheme and A its homogeneous coordinate ring (so that X= Spec A).

(Assume that Xis normal). Then Xis Sfactorial at its vertex if and only if
Ais ¢ UFD.

Since D, is normal and a cone (cf. Theorem 7.3 and Remsrk 7.4
(3) above), by hypothesis and the above lemma, we get that the coordinate
Ting Risy = Ry [PianyJo Of Diayis @ UFD. But then Ry [piman] = Riny
[ Pimaxy. pf,,},x,] isa UFD because p max) is transcendenta! over R;,,). By Pro-

*I am grateful to R.C. Cowsik who has drawn my attention to this
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position 3.1 above, we know that p(max) is a prime element in R,y Hence
it follows that Ry, isa UFD. Thus (i) holds. This completes the proof
of the Theorem. :

From the statement (iv) of the above Theorem, itis easy to see the
following.

CoroLL*rY 8 3. (1) The number of non-singular Schubert varieties in
(a fixed cellular decomposition of) Gan is equal to 1 -+ dim Gy, =

1+d@n—d.

(2) The codimension of a non-singular Schubert variety ( # G4 ,) is at
least equal to min (d, n — d).

(3)  Gg,n is isomorphic to the projective space Pg=%
&> the non-singular Schubert varieties in Gy, form a chain
<> the Schubert variety of codimension 1 in G,, is non singular
Sd=1 or n—1.

COROLLARY 8.4. The vertex of a determinantal locus D is factorial if
cnd only if D is isomorphic to an affine space.

Proor. If the vertex of D is factorial, D is alrecady non-singular
because Dis openin a Grassmann variety (by the above theorem). But
then D. being a cone, is non-singular at its vertex implies it is an afline
space.

PARAFACTORIALITY. For the definition of a parafactorial couple (X, Y),
(see [2] Exp. X1, p. 126 or [3], 21. 13, p. 313). Note that for a normal pro-
jective variety X C P, if X is arithmetically normal (i.e., depth., X > 2),
Pic X = Z {and generated by the class of Ox(1)) is equivalent to saying
that (X, (1)) is a parafactorial couple. Thus for a non-trivial Schubert

variety Q by Theorems 5.1 and 6 1 above, we find that Q, is parafac-
torial at its vertex.

If D is a determinantal locus of dimensiou > 2, it is natural to askif
D is parafactorial at its vertex. The answer is no because D is normal
but in general Pic D*# Z, for example Pic DF(d,n)=Z & Z (cf.
Remark 7.2 above).
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If the vertex (0) of D is a singularity of D, then (0) remains non-facto-
rial by Corollary 8.4, above. Now we have the following.

Corollary 8.5, If the vertex (0) of a determinantal locus D is the only
non-factorial point of D, then D is not parafactorial at (0) (i.e. Pic D+ # Z).

Proor. By Remark 7.4 (5) above, and hypothesis, we get that dim
D> 3. Butthenif (D, (0)) were a parafactorial couple, by [2], Cor. 3. 10,
p. 130, we would get that (0) is a factorial point of D which is a
contradiction.

Errata to “Postulation formula for Schubert varieties”
(See [10] under the references).

On page 161, the statement of Proposition 1.2 should read as **... the
local rings O3 o 2T¢ Cohen-Macaulay and have dimensions =d;, ...”
5

and in its proof, (i) should read as “Suppose R is a Cohen-Macaulay
noetherian ...”. On page 168, lines 2, 3 and 4 from top must be modi-
fied as follows: *‘By assertions (1) and (2) of the theorem for X, Y and
Z', and Proposition 1.1, we get that the local rings Rx, (o), Rr.( and
Rz yare Cohen-Macaulay. Now by ...”.
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