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Introduction. This paper is a continuation of our earlier paper [10]. 

With notations .as in [10] (some of which are recalled in 1 and 2, below), 

we prove the following 

1. THEOREM (6.1, below). The Picard group of a non-trivial Schubert 

variety Q in the Grassmawt variety Gd,„ is Z and is generated by the class 

of Oa (1). 

In fact, our method of proof of the vanishing theorems for D (and of 

the above theorem) yields the following 

2. THEOREM. Let W Q Gd,n be an equidimensional closed subschema 

whose irreducible components are Schubert varieties. Then (i) W is reduced 

(ii) Vanishing theorems hold for W (Hi) Postulation formula holds for W 

(iv) W is arithmetically Cohen-Macaulay and (v) Pic W = Z if dim W > 1. 

We then establish the precise relationship that exists between determi-

nental loci and Schubert varieties (cf. 3 and 7, below). We prove the 

3. THEOREM. (7.3, below). Determinantal loci are canonically isomor­

phic to the scheme-theoretic intersection of Schubert varieties with the big 

open cell in the opposite cellular decomposition ofGd,„. 

As an obvious consequence of this theorem, it follows that the deter­
minantal loci are integral, Cohen-Macaulay and normal. A useful fact 
to be noted is that Schubert varieties are cones in a neighbourhood of 
their distinguished point, namely the point Schubert variety (cf. Remark 
7.4(1 and 3), below). With this observation we prove the following. 

4. THEOREM (8.1, below). Let Q. be a Schubert variety in Gd,„andD 

be the determinantal locus in £1. Then the following statements are 
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equivalent: (/) Q. is arithmetically factorial (ii) there exists a unique Schubert 

variety of codimension 1 in Q (Hi) Q is non-singular (in fact, isomorphic to a 

Grassmann variety) (iv) Q is factorial (v) D is factorial (at its vertex). 

It is easy to recognise the non-singular Schubert varieties in Gd,„. By a 

result of Murthy ([9], p. 419), the non-singular Schubert varieties and 

hence also the codimension 1 Schubert varieties contained in them are 

arithmetically Gorenstein. 

5. Several proofs are now available for the arithmetic (normality and) 

Cohen-Macau lay nature of Schubert varieties. Here we include another 

proof (cf. 4.1 below) in which we construct a canonical system of para­

meters at the vertex of O. This system induces also a system of parameters 

at the vertex of the determinantal locus that D contains (cf. Remark 7.4 

(3), below). Finally, we point out (in 5.1, below) that the arithmetic 

normality of £2 is an immediate consequence of Pieri's formula. 

I am grateful to Professor C.S. Seshadri for many helpful suggestions 

and encouragemer.t. 

1. Notation and Terminology. Let Vbe an n-dimensional (finite) vector 

space over an algebraically closed field k of arbitrary characteristic. For 

a fixed integer d, \^d<n, Gd,n denotes the Grassmann variety of 

rf-dimensional linear subspaces of V. Let P = P(f\d(V)) denote the 

projective space in which Gdin is canonically imbedded. 

Let L denote the hyper-plane bundle on P as well as its restriction to all 

subvarietiesofP. For any subvariety X of P, X denotes the cone over 

X, and (0) denotes the vertex of X. 

We fix a celullar decomposition of Gd,n ([10], 4, p. 147). The 
Schubert cells are parametrised by the set £ = {(a) = (av . . . , ad) \ 

1 < « ! < . . . < ad < ;;}. For (a) E S, U(a) denotes the Schubert cell, and 
Q(a) = Zariski closure of U(a) in Gd,n (with the canonical reduced scheme 
structure) denotes the corresponding Schubert variety. 

For the standard partial order on S, namely, (a) < (b) if a^fo, 

1 < / < d; we have (a) < (b) if and only if D (a ) D Q ,„, ([10], 1, p. 151). 

We write (min) = (1, . . . , d) and (max) =Gj — d-\- 1, . . . , « ) which are 
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the (unique) minimal and maximal elements of S. We have D(m,n) = Gd,n 

and Q(raas) = {.v0}
 t a e point Schubert variety. 

Fix a basis ex, ..., en for V, and identify Vd = V® . . . ® V, (d copies) 

with the set of d X n matrices {(x„)/.v„ £ k, 1 < / < d, 1 < y < /?}. For 

(a) £ S, let Z?(0), C(0) and C'(0) denote the subvarieties of the affine space 

F11 defined as follows: 

A«> = {(*«) € *" I *« = ° ?orJ < °i> 1 < ' < <U <./ < "} 
C,«) = {(**,) G DM I Xi0/ = 1, 1 < i < J} 

C' |0) = {(*,,) G C(a) | *,„,. = 0 for / < k, 1 < i, k < </}. 

(Note that Ola), C (a) and C'(a) are affine spaces). Let ~: Fd-> /\a(V) be 

the canonical morphism defined by (\\, . . . , r^l-rb^ . . . A vd, v, £ K. 

It is easy to see that - (D(a)) = D,a), TC (C(a)) = 7i(C"(a)) -— £/,<,,, and that 

- : C\a) C+ U o) is an isomorphism. 

REMARK 1.1. When we want to study the properties of a given 

Schubert variety Q w or of those contained therein, we can assume «, = 1 

and aa < n. 

For, suppose at = a + bu a > 0, 1 < i < d. Then it is easy to see that 

D(a) is canonically isomorphic to the Schubert variety Q.m in the 

Grassmannian Gd, „_„ associated to a vector space W of dimension n — a. 

In fact, we can choose W to be the subspace of V spanned by {et}, 

a + 1 < ; / < « . Thus we can assume ax = 1. Similarly if ad = n, we can 

identify D la) with fl(a:1, ..., nj., in Gr,n-dJrr for a suitable r such that r < d 

and ar < // — d + r. In this case W can be choosen to be an (// — d -f- r)-

dimensional quotient space of I7. 

COROLLARY 1.2. 77;e Schubert varieties of dimension < 2 an? isomorphic 

to the projectivespacesPi, r ^ 2. 

For, if Q(a) is of dimension ^ 2, it follows from the dimension formula 
(cf. [10], Prop. 5.2, p. 149) that (a) is equal to one of the following 
elements of S, namely, (max), (n— d, n —d-\-2, .. .,n), (n — d—\, 

n ~ r f | 2 , . . ., /?) or (n — d, n — d + 1, . . . , /?) assertion follows in view of 
the above remark. 
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2. The homogeneous coordinate rings. Let Xtj denote the coordinate 

functions on the affine space V. For (a) G S, the coordinate ring of 

the affine space D(0) is the polynomial ring K [Xi,]w with Xi} = 0 for 

j < ait 1 < / < d, 1 < y < n. Let Rw denote the homogeneous coordinate 

ring of Q(a). Recall that R{a) is identified with the subring of/: [A"„](a), 

generated by the {p(1)}, (i) G S, where 

P«> = det 
X1tl . . . XXid 

x d i l . . . xdid 

Note that/? (0 # 0 if and only if (a) < (i). 

REMARK 2 .1 . Every non-zero p{i) in i?(a) is an irreducible element, i.e, 

the ideal (p ( i )) is maximal among the principal ideals in Rw. (This is clear 

because R{a) is a graded domain generated by thep ( i , 's , but the/>(i)'s 

are of least degree.) 

We write R = Rlmin) for the homogeneous coordinate ring of Gd,„. 

Recall that the ideal denning D(0) in Gd,„ is the ideal I(S(a)) in R generated 

by the {p(i)}, (i) G S(a) where S(a) = {(/) G Sjit < at for some t < d}. 

That is to say Rw ** R/I(Sia)) (cf. [10], 4, p. 154). 

3. Opposite cellular decomposition of Gd>n. The cellular decomposition 

of Gd,„ obtained by taking the orbits under the Borel subgroup of 

SL(n,k) consisting of the lower triangular matrices is called the opposite 

cellular decomposition of Gd,n (opposite to the one we have fixed). Let 

—-denote the cells in this decomposition. For all (a), (b) G S, we have 

^'(a) C Q'<b) if and only if (a) < (ft). Consequently, Q'(nu„) = Gd,n and 

the section of Gd,n with the hyper-plane i7(max), whose equation is 

P(max) = 0, is the codimension 1 Schubert variety in this decomposition. 

For our future use, we prove the following 

PROPOSITION 3.1. The set-theoretic intersection of any Schubert variety 

D(a) with the codimension 1 Schubert variety in the opposite cellular decom­

position is actually scheme-theoretic and is reduced and irreducible, i.e.^ 

Q;o). //(raax) 's integral (even at the vertex ofQ.ia)). 
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PROOF. We are required to prove that the element plmax) is prime in 

RU). To see this, take the polynomial ring k [AT,j](0) where (the non-zero 

Xu's being indeterminates) 

Xit = 0 for J / > n - d + 1, / = 1 
\ j >n — d + /', 2 ^ / < </. 

Let /?(a) denote the subring of this polynomial ring generated by the 

d x d minors p{i) of the matrix (X^). Note t ha t / ; , , , = 0 if and only 

(0 G •$(„, or (/) = (max). It is clear that we have a natural surjective 

homomorphism of rings/: R(a) -> Rw defined by /?(,•, i—>-/;<o- Now 

proceeding exactly as in the proof of the basis theorem for 0(o) (cf. [10], 

Theorem 4 .1 , p. 155), it is easy to prove that the images under/of the 

standard monomials in R{a) whose last factors are 7=/'(max) form a vector 

space basis for/? (0). Consequently, we get that the kernel o f / i s pre­

cise')' the principal ideal (/'(max)), hence the result. 

RLMARKS 3.2 (i) The affine open set /J(max) ^ 0 in Ga,n is simply the 

big open cell in the opposite cellular decomposition of Ga,n and its 

coordinate ring, namely Rj(l — P(m^))R, can be canonically identified 

with the polynomial ring k [Xh] with the specialisation that 

Xin-d+t = 8„, 1 < i, t < d. 

(ii) We shall see (cf. 7, below) that the open set pimax) =A 0 in Q(„) is 

a determinantal locus and conversely. 

(iii) One can study the geometry of the scheme-theoretic intersection 
of a Sjfiubert variety in one cellular decomposition of Gd,„ with another 
in the opposite one. Such a study has been made by Chevalley (in [1]) 
for an arbitrary GjB. Some of the results proved there admit easy 
proofs in the case of Gd,n. 

4. Arithmetic Cohen-Macau'ay Character. The following theorem has 

been proved by several authors, Viz., Hochster, Kempf, Laksov etc. We 

have given two proofs in [10]. Here is another in which we exhibit a 

canonical system of parameters making a repeated use of Picri's formula 

(cf. [10] p. 159). 
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THEOREM 4.1. Schubert varities are arithmetically Cohen-Macaulay. 

PROOF. Let Q = 0 (0) be a Schubert variety of dimension g. In view 

of the following lemma, it suffices to prove that Q. is Cohen-Macaulay at 
its vertex. 

/\ 
LEMMA 4.2. Let W C P be a closed subscheme. Then W is 

/ \ 
Cohen-Macaulay if and only if W is Cohen-Macaulay at its vertex. 

/\ 
PROOF. Suppose (0) is a Cohen-Macaulay point of W. By [3], 12.1.1, 

/ \ 
p. 174, W is Cohen-Macaulay in a neighbourhood, say U0 of (0). It is 

/ \ 
clear that each fibre of the natural projection p: W — {(0)} -*• W meets U0. 

/ \ /\ 
But these fibres are simply the Gm — orbits in W — {(0)}, and hence W 
is Cohen-Macaulay at each point ofp_1(x) for all x £ W. This proves 
the Lemma. 
Proof of the theorem (continued). Let Sjt; = 0, . . . , q, denote the subsets 
of S defined as follows: 

d 

S, = {{b) G SHa) < (*) and ]£(^ _ a,) = /}. 
; = i 

Clearly S0 — {(a)}. Since q — E(n — a,)— \ d(d — 1) (by the dimension 
formula), it follows that Sq-1 = {(n — d, n — d-\-2, ...w)} and 
SQ = {max)}. Let/,- = Spltyj = 0, . . . , q. 

(I) € Sj 

Claim: f0, . . . , / , , is the required system of parameters for Q. at its vertex. 
To see this, first note the following. Let Q' QQ. be a Schubert variety 

of dimension r. Construct/0, .. . ,•/ , as above for Q!. It is easy to see 
that /„, .. . , /„. ,-! = 0 mod 7(Q') and /„_,.+,• = / } mod 1 (Q') for j = 0, 
. . . , r, where I(fl') is the ideal defining CI' in Q. 

Now the rest of the proof is the same as our second proof in [10], p. 170. 

5. Arithmetic Normality. 

THEOREM 5.1. Schubert varieties are arithmetically normal. 
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PROOF. Let O = Q(„) be a Schubert variety. Since D is 

Cohen-Macaulay, it suffices to prove that the singular locus, say Z0 ofO 

is of codimension ^ 2 in Q. We know that Z„ is a union of some of the 

Schubert varieties contained in Q, and so it suffices to show that none of 

the codimension 1 Schubert varieties, say Clv ..., Qv in O is contained in 

Z0. Let lt be the ideal defining Qj in D, 1 < /" < p. Recall that, by Pieri's 

formula, we have in the ring Ria) 

(Pia)) = (Mi 

This shows that, if Xj is the generic point of Qj, the local ring QniX. is a 

discrete valuation ring (whose maximal ideal is generated by pia)), and 

hence Xt (£ Z0 for any i. Hence the result. 

6. Picard group of Schubert Varieties. 

THLORCM6.1. The Picard group of a non-trivial Schubert variety is Z 

and is generated by the class of L. 

PROOF. Let Q = Qia) be a Schubert variety of dimension q^l. We 

prove the result by induction on q. For q < 2, by Corollary 1.2 above, 

Q. is a projective line or plane and so the result follows. Assume that 

Let / / be the hypcr-planc in P whose equation is Pia) = 0. By Pieri's 

formula, we know that Z = Q.H is a union of the Schubert varieties Q,-, 

1 < / < / > of codimension 1 in Q. Hence by the induction hypothesis, 

the theorem is true for the components of Z. Now we make the 

CLAIM A : Pic Z = Z and is generated by the class of L. 

To see this, we proceed by induction on p, the number of components 

of Z. We can assume/? ^ 2. As in [10]. p. 164, write 

X="\J Qit r = Qp and Z ' = i n Y. 

By induction on p and q, it follows that the Picard groups of X, Y and Z' 

are Z and are generated by L. Note that dim Z ' = q — 2 > 1). Now look 

at the sequence of groups: 

(*) 0 >PicZ—^-»Pic x Pic K — % P i c Z ' >0 
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where <p is the restriction map and <J/ takes (Lr, V) to Lr+S. Now Claim A 

is a consequence of the 

CLAIM B : The sequence (*) is exact. 

Clearly ty is surjective and Im<p = Ker^. To see 9 is injective: recall 

that we have an exact sequence of Cz-modules (cf. [10], p. 165) 

(**) 0 -> Oz -> Ox ® Or -> O z . -> 0 

Let A/ be a line bundle on Z whose class is in Ker 9. Now (**) induces 

an exact sequence 

0 -> M -> A/|jr © A/ | v -> M |z- -> 0 

i.e., the sequence 

0->M->-(5r© C V - > 0 z ' ^ O 

is exact. Since A',}'and Z' are connected projective schemes, we get an 

exact sequence of vector spaces 

0 -> H°(Z, M)-+k®k~>k->0 
This gives that H°(Z, M) zz k. Similarly, replacing M by M~l, we get 

that #°(Z, Af-1) ; s A'. But this is possible only if MxOz- Hence 

Claim 5 is proved. 

Now the theorem follows from Claim A and the final 
CLAIM C: The natural restriction map Pic Q -> Pic Z is injective (and hence 

an isomorphism). 

To see this, we need the following 

THEOREM 6.2. (Grothendieck cf. [2], Cor. 3.6, Exp. XII, p. 153)). Let 

The a projective scheme (over k) of dimension > 3. Let Or(l) be an ample 

tine bundle on T, and let t be a section of OT(\) which is Or-regular. Let 

T0 be the divisor of the zeros oft. Assume that T has depth ~^2at each of 

its closed points and that W(T0, Ort 00) = 0/or r < 0. Then for every 

open neighbourhood U ofT0,the natural map Pic U->-PicT0 is injective 

(in particular, Pic T -> Pic T0 is injective). 

The hypothesis of the theorem is satisfied for T=Cl, OT(\) = L,t = pM 

and T0= Z (in view of Theorem 4.1 above, and the vanishing theorems 
for Z (cf. [10], Step A. p. 164)). This proves Claim C and hence also 
the theorem. 



SOME PROPERTIES OF SCHUBERT VARIETIES 139 

7. Determinantal Loci. Definition 7.1. Let 1 < k < d < n be fixed inte­

gers. Let 0 < « ! < . . . < ak — n be a sequence of integers. Let {Ci;}, 

1 <; i ̂  d, 1 < 7 < n, be a J x « matrix of indeterminates over the field 

k, and let &[£/i;] be the polynomial ring. Let Jai• ak (d, n) denote the 

ideal in k[Uit] generated by the t x t minors of the d x at submatrix 

(£/,,), 1 < i < d, 1 ̂ 7 < at for all / = 1 , . . . , k. Then the subscheme of 

the affine space Spec (/>[£/„•]) defined by the ideal Jai-ak (d, n) is called a 

determinantcl locus, and is denoted by Dai-ak (d, n). Since no confusion 

is likely, we write Jk(d, ;?) for the case when at — t—l, 1 < t < k — 1, 

ak = n. The corresponding determinantal locus, denoted by Dk (d, n), is 

simply the locus of k X k minors of the matrix (£/*;). 

Denote by D^- ak(d, n) the subscheme of the projective space Proj 

(k[U,j]) defined by the (homogeneous) ideal Jai.ak{d,ri). We call 

Dti-ak (d n) the projective determinantal locus. By definition, Dai-ak(d, n) 

is the cone over Dti:-ak{d,n). We will continue to denote the vertex 

of£>fll-0jt id n) by (0). 

REMARK. 7.2. The projective determinantal locus Dt(d, n) is non-

singular (and hence the vertex of D2(d, n) is an isolated singularity unless 

d=\). 

To see this consider the Segre imbedding 

^p^xpr^pf-1 

Recall that the image of J is an intersection of quadrics in P^" - 1 = 

Proj (k [Uij]) and the equations of these quadrics are nothing but the 2 X 2 

minors of the matrix (Ui}). In other words, the image of s is simply 

Dt(d n) and hence the assertion. 

The following theorem establishes the connection between determi­
nantal loci and Schubert varieties. Our treatment is based on an obser­
vation due to Hochster (cf. [4], Corollary (3.13). p. 53). We bring out 
the underlying idea therein. Interpreted properly, we find that the 
determinantal loci are nothing but the scheme-theoretic intersection of 
Schubert varieties with the big open cell in the opposite cellular decom­
position of the Grassmann variety. Kleiman (cf. [7] 4.8, p. 424) has done 
this for the class of the determinantal loci Dk{d, n). 
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THEOREM 7.3. The determinantal locus Dai.„ak (d, n) is cctnonically 
isomorphic to the standard affine cpen subset P(n+1,..., „+<;, =/Vax) ^ 0 " / 
the Schubert variety D(i)) in Gd,n+d where (b) = (blt.. .,bd) is defined by 
bt = «t•+ 1 for 1 < / < k and b, = n + j — k + 1 /or k < _/ < rf. 
Consequently, Da^- ak (d,n) is 

... integral (i.e., the ideal Jai-ak (d, n) is prime) 

... Cohen- Macaulay (i.e., Jai-ak(d, n) is "perfect") 

... normal 

.. .of dimension = dim D(6, 

= ft*-l)(2/i + 2 r f - * ) - £ * 
i-l 

PROOF. For convenience, write J = Jaiak(d, n), D = Dax-ak(d, n) and 
Q = 0(6) with (b) as in the Theorem. Write / = I(Sitl)), the ideal of O and 
A = k[Ujj]lJ, the coordinate ring of D. Let B = /?// be the coordinate 
ring of O where R is the coordinate ring of Gdn+d. Recall that R is 
identified with the subring of k[Xti], 1 < i < d, 1 < / ^ n + d, generated 
by the e? x </ minors of the matrix (A"w). 

We are to prove that A is isomorphic to 5' = B[p'i£axfa, the coordinate 

ring of the affine open subset />(max) ¥= 0 of LI. We have 

B'=BI(l-p(atx))B 

= RI(I+(l~Pim3*))R) 

= RIQ. - pla»))RKl + (1 - /W))K)/(1 " i W x ) ) * 

Now look at Rj(l —p(md.x))R = JR [Pimb)lo which is the coordinate ring of 
the big open cell in the opposite cellu'ar decomposition of Gd, n+d. By 
Remark 3.2 (i) above, we know that R/(l —plma*))R is canonically 
identified with the polynomial ring k[Xij\, 1 < ;', < d, 1 <_/ < n (i.e. 
with the specialisation Xt, n+( = S.j, 1 < /', / < d). Under this identifica­
tion, it is clear that p{max) = 1, Rl(l — plmaX))Rzzk [Ui{] and / 
corresponds precisely to the ideal J. Thus B' ss A as required. The other 
assertions are immediate since D is open in Q and LI has those properties. 

REMARKS. (1) It is easy to see that the vertex of D corresponds to 
the point .Y0 of Q where {x0} = 0(maX) is the point Schubert variety. 
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(2) While the determinantal locus D inherits all the "good" proper­

ties of Q, it is not clear a priori if D, reflects the good properties of D 

(except normality and non-singularity). However, we will see that the 

property being factorial is well behaved (even for the cone D) (cf. Theorem 

8.1, below). 

(3) Suppose £2 is a Schubert variety in Gr„, and D is the affine open 

subset /'(max) ^ 0 in Q, then D does not really correspond to a determi­

nantal locus as defined above. However, one can generalise the definition 

of a determinantal locus so as to include these cases. In other words, 

D is a "true" determinantal locus. But what is useful is to note that this 

affine open subset is a cone (i.e., its coordinate ring is graded) and the 

above remarks apply. In other words Schubert varieties are cones in a 
neighbourhood of x0 (with x0 being the vertex). (We shad use only this 

fact in the sequel). 

It is easy to see that the first q elements of the canonical system of 

parameters/„, , / 3 (g = dim Q) at the vertex of Q. (constructed in §4, 

above) go down to a system of parameters at the vertex of D. 

(4) Determinantal loci, being cones and at the some time open sub-

varieties in Schubert varieties in a particular way, admit a good algebro-

geometric study as for the Schubert varieties. 

(5) A determinantal locus of dimension < 2 is an affine space. (This 

is so because the corresponding Schubert varieties are linear (Corollary 

1.2, above)). 

8. Characterisation of factorial Schubert varieties. 

THEOREM 8.1. Let Q(a) be a Schubert variety in Gd,„ and let Dm be the 

determinantal locus (i.e., the affine open subset P(mSLx) ¥= 0) in Q(a). Then 

the following statements are equivalent: 

(i) Q(0) is arithmetically factorial (i.e., the ring Rla) is a UFD). 

(ii) There exists a unique Schubert variety of codimension 1 in D(0). 

(Hi) The element p{a) is prime in R{a). 

(iv) (a) = ( a j , . . . , cd) is constituted by either one or at most two segments 

of successive integers according as ad < n. 
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(v)* D(0) is isomorphic to the Grassmann variety Gr„for a suitable r ands. 

iyi) D(a) is non-singular 

(viV) fi(a) is {locally) factorial 

(viii) Dw is factorial {at its vertex). 

PROOF. Let Q x . . . , Q„ be all the Schubert varieties of codimension 1 

in D(„). Let It be the ideals defining the Qt 's in Q.<_ay Recall that the ideals 

Ii are of height 1 in Rw and that the element p^ is irreducible (cf. 

Remark 2.1 above). Further, by Pieri's formula wc have 

(Pw) = n h 

With these observations, it is trivial to see that (i) => (ii) => (Hi). 

Now assume (iii) is true. If (iv) were not true, there would exist (b), 

(c) G S, such that {b) ̂  (c), (a) < (b), (a) < (c) and 
d d 

]£ (6,-a«) = !=•£(*-*) 
This shows that the ideals I(Sm) and I(Sic)) (corresponding to the 

Schubert varieties Clw andQ(c) of codimension 1 f2{a)) are distinct prime 

ideals of height 1 in R<_ay and contain the prime ideal (/>(<,)). This is 

clearly a contradiction. Hence (iv) holds. 

By Remarks 1.1, (iv) => (v) is immediate. It is obvious that (v) => 

(vi) ^ (vii) => (viii). Finally, (viii) => ( I ) : 

First look at the following. 

LEMMA 8.2. (cf. Samuel [12], Prop. 1 A, p. 26). Let X C P be a chsed 

subscheme and A its homogeneous coordinate ring (so that X — Spec A). 
A. As 

{Assume that X is normal). Then X is factorial at its vertex if and only if 

A is a UFD. 

Since D(a, is normal and a cone (cf. Theorem 7.3 and Remark 7.4 

(3) above), by hypothesis and the above lemma, we get that the coordinate 

ringi?'(a, = /?(a)[p(m
1»)]()ofZ)(a)is a UFD. But then RM [pZLx)] = R'w 

[Ptmax). P~mi*)] is a UFD because/>(max) is transcendental over R(a). ByPro-

*I am grateful to R.C. Cowsik who has drawn my attention to this 
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position 3.1 above, we know thatp{max) is a prime element in R(a). Hence 

it follows that RM is a UFD. Thus (i) holds. This completes the proof 

of the Theorem. 

From the statement (iv) of the above Theorem, it is easy to see the 

following. 

COROLLARY 8 3. (1) The number of non-singular Schubert varieties in 

{a fixed cellular decomposition of) Gd,n is equal to 1 + dim Gd,n = 

1 +d (n - d). 

(2) The codimension of a non-singular Schubert variety (=£ Gd „) is at 

least equal to min (d, n — d). 

0 ) Gd,n is isomorphic to the projective space p£ ( n - d ) 

O the non-singular Schubert varieties in Gd,nform a chain 

•&• the Schubert variety of codimension 1 in Gd,„ is non singular 

O d = 1 or n — 1. 

COROLLARY 8.4. The vertex of a determinantal locus D is factorial if 

end only if D is isomorphic to an affine space. 

PROOF. If the vertex of D is factorial, D is already non-singular 

because D is open in a Grassmann variety (by the above theorem). But 

then D. being a cone, is non-singular at its vertex implies it is an affine 

space. 

PAR/IACTORIALITY. For the definition of a parafactorial couple (X, Y), 

(see [2] Exp. XI, p. 126 or [3], 21.13, p. 313). Note that for a normal pro­

jective variety X CP, if A'is arithmetically normal (i.e., depth(0) X > 2), 

Pic X = Z (and generated by the class of (5x(l)) is equivalent to saying 

that (X, (C)) is a parafactorial couple. Thus for a non-trivial Schubert 

variety D by Theorems 5.1 and 6 1 above, we find that fl, is parafac­

torial at its vertex. 

If D is a determinantal locus of dimension ^ 2, it is natural to ask if 
D is parafactorial at its vertex. The answer is no because D is normal 
but in general P i c D + # Z , for example Pic Df (d,n) = Z © Z (cf. 
Remark 7.2 above). 
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If the vertex (0) of D is a singularity of D, then (0) remains non-facto­
rial by Corollary 8.4, above. Now we have the following. 
Corollary 8.5. If the vertex (0) of a determinantal locus D is the only 
non-factorial point ofD, then D is not parafactorial at (0) (i.e. PicD+^Z). 

PROOF. By Remark 7.4(5) above, and hypothesis, we get that dim 
D > 3. But then if (D, (0)) were a parafactorial couple, by [2], Cor. 3.10, 
p. 130, we would get that (0) is a factorial point of D which is a 
contradiction. 

Errata to "Postulation formula for Schubert varieties" 

(See [10] under the references). 

On page 161, the statement of Proposition 1.2 should read as " . . . the 
local rings Oo are Cohen-Macaulay and have dimensions — J*, . . . " 
and in its proof, (i) should read as "Suppose R is a Cohen-Macaulay 
noetherian . . ." . On page 168, lines 2, 3 and 4 from top must be modi­
fied as follows: "By assertions (1) and (2) of the theorem for X, Y and 
Z', and Proposition 1.1, we get that the local rings Rx, (0), Rr. <0) and 
Rz: co)are Cohen-Macaulay. Now by . . . " . 
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