Gowers U<sub>3</sub> Norm of Cubic MMF Bent-Negabent Functions Constructed by using Feistel Functions

Authors

  • Saral Datta
  • Sugata Gangopadhyay
  • Sanjib Kumar Datta

DOI:

https://doi.org/10.18311/jims/2022/29628

Keywords:

Boolean functions, Gowers uniformity norm, bent-negabent functions

Abstract

We obtain the Gowers U3 norm of a class of cubic Maiorana-McFarland bent{negabent functions constructed by using Feis- tel functions.

Downloads

Download data is not yet available.

References

V. Y-W. Chen, The Gowers norm in the testing of Boolean functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009.

S. Gangopadhyay, B. Mandal and P. St˘anic˘a, Gowers U3 norm of some classes of bent Boolean functions, Designs, Codes and Cryptography, 86(5) (2018), 1131–1148.

S. Gangopadhyay and B. Mandal, Second order nonlinearity bounds of cubic MMF Bent– negabent functions constructed by using Feistel functions, IPSI BgD Trans. Advanced Research, 11(1) (2015), 13–19.

T. Gowers, A new proof of Szemerdis theorem, Geom. Funct. Anal., 11(3) (2001), 465588.

S. Markovski and A. Mileva, Generating huge quasigroups from small non-linear bijections via extended Feistel function, Quasigroups related systems, 17 (2009), 91-106.

A. Muratovi-Ribi and E. Pasalic, A note on complete polynomials over finite fields and their applications in cryptography, Finite Fields Appl., 25 (2014), 306-315.

M. G. Parker and A. Pott, On Boolean functions which are bent and negabent, In: Proc. Int. Conf. Sequences, Subsequences, Consequences 2007, LNCS, Springer, Vol. 4893 (2007), 9-23.

C. Riera and M. G. Parker, Generalized bent criteria for Boolean functions, IEEE Trans. Inform. Theory, 52 (9) (2006), 4142-4159.

K.-U. Schmidt, M. G. Parker and A. Pott, Negabent functions in the MaioranaMcFarland class, In Proc. International Conference on Sequences and Their Applications 2008, LNCS, Springer, Vol. 5203 (2008), 390-402.

P. Stnic, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopadhyay and S. Maitra, Investigations on bent and negabent functions via the negaHadamard transform, IEEE Trans. Inform. Theory, 58 (6) (2012), 4064-4072.

W. Su, A. Pott and X. Tang, Characterization of negabent functions and construction of bentnegabent functions with maximum algebraic degree, IEEE Trans. Inform. Theory, 59 (6) (2013), 3387-3395.

Published

2022-08-23

How to Cite

Datta, S., Gangopadhyay, S., & Kumar Datta, S. (2022). Gowers U<sub>3</sub> Norm of Cubic MMF Bent-Negabent Functions Constructed by using Feistel Functions. The Journal of the Indian Mathematical Society, 89(3-4), 293–303. https://doi.org/10.18311/jims/2022/29628