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The mining industry is slow in adopting digitisation
compared to other industry segments. The companies are
coping with operation cost pressures due to demand
fluctuations and increased operations costs. The equipment
maintenance costs aggregate around 10% to 30% of the
direct mining operations costs due to different operating
conditions. This article leverages the Cox regression machine
learning (ML) model to determine the survival days of shovels.
Subsequently, to increase the availability, a mathematical
model is formulated to optimise the maintenance schedules of
shovels to increase their availability. Finally, decision
optimisation (DO) ILOG CPLEX and remaining useful life
(RUL) is deployed to combine maintenance schedules of
preventive maintenance (PM) and predictive maintenance
(PdM). This ML led innovative model optimises maintenance
schedule drives the data-driven actions to demonstrate the
metrics of overall equipment effectiveness (OEE), overall
throughput effectiveness (OTE) and impact factor (IF)
computation. furthermore, the IF improvement is
demonstrated through a case study of mining shovels. The IF
improvement is also aligned with the productivity
improvement of equipment as per the United Nations (UN)
sustainable development goals (SDGs).

Keywords: OEE, sustainability, ML, cost optimisation,
mining shovel, RUL

1.0 Introduction

Although the measurement of various operations is
done as per the defined best practices key
performance indicators (KPIs), it must measure the

impact across multiple processes or activities. The structured
context and a methodology framework are required so that
the mining enterprises can define the metrics, measure,
monitor, manage and report the performance. These KPIs can
be achieved by framing a scorecard with the measurement
insights, performance reporting, and associated innovation

guidelines. Many maintenance policies have been studied
and redefined over the years, focusing primarily on
increasing equipment availability. Total productive
maintenance (TPM) and OEE were introduced in the
manufacturing industries, also adopted in the mining
industries. The TPM was submitted during the 1980s in the
automobile industry, and for its evaluation, OEE was
proposed by Nakajima. TPM is calculated as the product of
availability, performance, and quality (Nakajima 1988).
Multiple research and publications have been done for OEE,
which can be leveraged for mining shovels. The overall
throughput effectiveness (OTE), an index with systemic
vision, was proposed by (Muthiah and Huang 2007) in order
to measure the productive performance of production lines
taking into account the taxonomy of the equipment present
in the system. This index considers the OEE of each piece of
equipment and makes it possible to carry out factory level
diagnostics, detect bottlenecks, and identify hidden
capacities. OTE is developed based on comparing the actual
throughput with respect to the maximum throughput
achievable by the system (Muthiah and Huang 2007).

Earlier, the characteristics of OEE measurement did not
consider external effectiveness, complexity, and innovation.
The improvements in OEE can be achieved by the
decentralised design of the organisation and address the
challenges (Jonsson and Lesshammar 1999). The innovative
OEE framework lays out the process for a state-of-the- art
data collection system for improvement, and real-time
visibility of total productivity (Jeong and Phillips 2001). Most
industries measure OEE based on downtime losses and
ignore the other losses. The information technology (IT) and
operation technology (OT) integration provide measuring
and monitoring of loss reasons which can be brought in the
ambit of OEE measurement as the OEE was 55%. The insights
from the study portray that majority of the losses were due
to performance losses. These performance losses need to be
revisited for improving the OEE (Ljungberg 1998).

Therefore, this challenge of productivity improvement
was partially addressed by a study performed by calculating
OEE using he TPM inputs (Samanta and Banerjee 2002). If
we elaborate on OEE, it is a combination of six big losses
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defined to calculate the revenue loss. The six big losses
comprise:
1. Breakdown loss of equipment
2. Set-up and adjustment time of equipment
3. Minor stoppages: idle time, marching time
4. Speed loss
5. Quality
6. Yield loss

These six losses contribute significantly to the
calculation of OEE. Therefore, measuring and monitoring OEE
is a paradigm for mining operations. As per the research
performed in manufacturing industries, an improvement in
OEE of more than 23% decreases the losses by more than
40% (Al-Najjar and Alsyouf 2004). Similarly, various types of
time losses are significant parameters for the calculation of
shovel OEE and can be derived either by calendar hours
days or loading hours based. Further still, a lot of
improvements needs to be executed to calculate the OEE of
mining equipment which will address the integrities of the
complex loading process in mining (Elevli and Elevli 2010).
Even though OEE calculation is an effective key performance
indicator (KPI), it can derail mining shovel effectiveness due
to the intricate process. Various evolving OEE definitions
have also come up in research and practice, coupled with
their modified formulations based on the industry segment.
The emerging digitally enabled platforms would create new
economic value and be innovated by the innovators to
develop and measure, which can be estimated to be about
70% of the new value (Herweijer, Celine 2019).

The objective of this article is to reduce “Breakdown
loss” by cost optimisation and therefore improve the
productivity of shovels demonstrated by IF in a structured
method.
1. Optimise cost of PM and PdM
2. Reduce maintenance downtime “Breakdown Loss” for

improved OEE, OTE and IF leveraging maintenance cost
optimisation

3. Harness the future potential of exponential technologies
in mining
To improve the availability of equipment survival days

calculated based on the historical breakdown is utilized to
determine the predictive maintenance. The combined
maintenance strategy of preventive and predictive
maintenance increases the availability to reduce shovel
management costs and improve overall performance
efficiency. This paper provides comprehensive
characteristics of maintenance attributes to be strategised to
ensure effective maintenance by the metrics of OEE, OTE and
the IF.

The article structure is as follows: Section “Literature
Review” illustrates the prevalent maintenance practices and

justification of this innovative approach. Section “Methods”
provides insights on methods and entails, step by step
solution process flow, exploratory data analysis, Remaining
Useful Life (RUL) modelling, mathematical modelling, and
optimisation. Further, section “Results” narrates the results
and section “Conclusions” concludes the discussions.
LITERATURE REVIEW

Mining, an intrinsic asset-based industry, and extreme
operating conditions lead to numerous unplanned
maintenances, resulting in prolonged downtime and becomes
cost-intensive. These conditions lead to emergency repairs,
and unbudgeted investments in equipment spare parts
exceed the budget (Stahl et al. 2011) incurrence. These
extensive running expenses for mining equipment fluctuates
from 10% to 30% of the production operations cost.
However, leading-edge maintenance strategies and practices
can prolong the useful life of equipment with insignificant
costs (Gölbacsi and Demirel 2017) and provides the way
forward for “Integrated Asset Management (IAM) (Alaswad
and Xiang 2017). Organisations’ primary aim is to decrease
unanticipated failures and to lower various cost constituents
present the optimisation potential by assuring a precise PdM
strategy (He et al. 2018). The mining operations’
quintessential operating costs are the mining machinery and
equipment, which varies from 20% to 35% (Dhillon 2008).
Furthermore, the operation costs per hour of these shovels
are on the scale of thousands of dollars, so it is pertinent to
sustain a sound health profile of them to derive maximum
gain (Alla et al. 2020). In their investigation, Vayenas and Wu
assessed the inherent conditions of load-haul-dump (LHD)
failures and performed mathematical analysis for its
associated losses (Vayenas and Wu 2009). Mobley
contemplated that reactive maintenance (fix it when required)
is threefold more expensive than the scheduled maintenance.
However, PM’s expenses can be costly depending on
consolidated costs of maintenance and production losses
(Mobley 2002).

Salvatore Peralta et al. define resource degeneration and
heterogeneous geologic conditions, increase the operations
and equipment cost (Peralta et al. 2016). The extraordinary
fuel consumption by diesel equipment contaminates the
environment, and subsequently, the intention is to diminish
the discharge of carbon and progress towards sustainable
mining (Botin and Vergara 2015). The vitality utilisation
impact of mining equipment maintenance was evaluated
based on emanating substances. Subsequently, by limiting
these impacts, they observed that costs would be restricted
to approximately 75% (Peralta et al. 2016). The reduction in
equipment reliability drives to risen operation cost due to
high fuel consumption and Green House Gas (GHG)
emissions (Katta et al. 2020). The fuel cost has a significant
portion in equipment operations cost and is to be assessed
for determining the reliability estimation of equipment in
deliberation (Peralta et al. 2016).
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Manuel Parente et al. illustrates the leverage of AI
strategies to evaluate equipment operations profitability by
multi-constrained resource allocation, leading to an increase
in methodologies to reduce costs and work duration as per
the research objective (Parente et al. 2016). Christina et al.
targeted the primary cause of cost minimisation by selecting
the equipment for mining operations while contemplating the
age of mining equipment, historical performance, and fleet
size after maintenance and overhaul. These selections of
attributes play a fundamental part in optimising the
cumulative cost of production operations (Burt and Caccetta
2018).

Topal and Ramazan explained how to minimise the
maintenance cost of upkeep for the HEMM and presented an
innovative approach dependent on Mixed Integer
Programming (MIP) methods. The MIP model solutions
principally focus on the production schedule and reduce the
maintenance costs to the tune of 10% to 25% (Topal and
Ramazan 2010). The PdM has emerged from a statistical
model to transition to an ML model to monitor the equipment
life-cycle and drive corrective actions appropriately as
necessitated (Chen et al. 2020). The sole method to drive
productivity improvement is by enhancing the economies of
scale and introduce innovations to strategise and transform
the mine operations (Nehring et al. 2018).

C. Dutoit explained that a nearly accurate PM schedule
could accomplish failure prevention. Therefore, the increase
and decrease of the PM schedule time intervals as per the
specified tolerance can retain the equipment quality for its
peak performance (Dutoit et al. 2018). Hemanth Reddy Alla et
al. describes a relationship between the significant increase
in job orders which is directly proportional to maintenance
costs due to equipment ageing. The references of repetitious
patterns in a disintegrated time-series of data present the
metrics perspectives of maintenance costs to the job order
numbers with impact due to seasonal variances (Alla et al.
2020).

There are several similar attributes in the maintenance
scheduling of mine equipment to the automobile (Prytz et al.
2015), aircraft (Aremu et al. 2019), and manufacturing where
the failure prediction is contemplated as leading and pro-
active maintenance operations. F.S. Nowlan et al. concluded
that the maintenance schedule frequency should be based on
failure patterns and dynamic based on his predominant
research in the airline industry. Reliability Centric
Maintenance (RCM) is the best method to improve equipment
availability. This research in the airline industry formed the
basis of RCM based PdM and is universally acknowledged
as the best practices of equipment maintenance across all
industry segments (Nowlan and Heap 1978) (Chen et al.
2020).

The sustainable maintenance objectives are explicitly
defined on how they affect the environment and its impact

that can be minimised, the risks mitigated, the cost of non-
productive operations, and waste. The balanced approach to
reducing costs and digitisation of mining operations
provides visibility to real-time operations. Recent technology
interventions add the ability to predict and respond to
operational disruptions. The availability and utilisation of
mining equipment are lowest compared to most industries,
for example, oil and gas, power, and manufacturing. Therefore,
there is an immense improvement in equipment maintenance
as it is aligned as per SDG 8 and SDG 9.

This productivity improvement and innovation objectives
align with SDGs mentioned below for improved OEE through
responsible production and consumption. The SDGs
(Compact and others 2016) are:
1. SDG 8: Attain higher economic scales of productivity

through a technological upgrade, diversification, and
innovation, with a focus on the industry segments which
demand intense labour and create high value.

2. SDG 9: By 2030, with improved resource efficiency and
more comprehensive adoption of clean and
environmentally reliable technologies and processes for
sustainable development. Respective countries undertake
actionable measures as per their capabilities with a single
objective of reducing CO2 emission per unit of value-
added. Innovative solutions that boost productivity,
enhance energy efficiency, improve the utilization of
resources.

3. SDG 12: The SDG items 1 and 2 mentioned above are
corroborated by the likely impact of such developments
for innovative and responsible production operations.
SDG 12 also provides a framework for consumption of
natural resources, fossil fuel in this case. In the future,
remote work arrangements, OEE and OTE will be key
metrics for measurement.
The mining equipment needs to be effectively assigned

to the maintenance repair workshops to optimise the
maintenance costs. The impact to the production operations
schedules is enormous if not effectively allocated which,
results in production loss and increased operations cost
(Sharma et al. 2019) (Botin and Vergara 2015). The cost
pressure is impacting all the organisations at present, and the
companies recognise that maintenance cost savings are the
most sought for an avenue to reduce the overall impact
(Ghosh and Roy 2009). The numerous studies conducted by
researchers (Lister and others 2012) (Jantunen et al. 2011)
and businesses for the computation of various maintenance
activities concluded that the wrench time for the equipment
maintenance is minimal compared to other actions combined.
Wrench time, which is the actual work time, aggregates only
35 % to 40 % of the total maintenance time as demonstrated
in Fig.1.

The intention to resolve the maintenance predicament
continues the same even though numerous analytical
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methods and approaches have deployed to decrease the
significant impact of the maintenance costs (Mi et al. 2020)
(Angeles and Kumral 2020). It is undeniable that in this era of
the 4th industrial revolution, AI coupled with IIoT can
improve the productivity of mining enterprises, which is
comparable to the airline industry (Edwards et al. 2017).
These exponential technologies and innovative practices
would improve the OEE (Samatemba et al. 2020) by adapting
the amalgam of technology, business rules and constraints.

Based on historical failure data, historical tasks, and
maintenance data, Machine Learning (ML) (Susto et al. 2015)
(Dalzochio et al. 2020) determines the shovels likelihood of
failure. If the equipment maintenance operation is executed
too late or too early, either way, it results in a more
substantial loss due to production and unscheduled failure
(Allah Bukhsh et al. 2019) (Gölbacsi and Demirel 2017).
Furthermore, if the frequency of equipment maintenance is
too short, it will result in more maintenance time and decrease
equipment availability. Therefore, the novel combination of
PdM and PM would decrease maintenance time and costs
resulting in maximising production output.

Diverse researches have been conducted to optimise the
PM schedule of equipment individually by employing
survival analysis blended with linear optimisation. However,
the organisations earlier did not implement the model that
combines PdM and PM’s maintenance schedule with many
constraints to decrease the maintenance job time. The
recommended model leverages equipment’s survival
analysis, blended with IBM’s Ilog CPLEX’s Decision
Optimization (DO), to overcome the challenge of maintenance
schedule with the objective of downtime reduction.
Therefore, this research introduces an innovative novel
combination of Cox regression and the DO model to
overcome the prevalent challenges in maintenance
operations. Moreover, this article explores the research gap
of combining the PdM failure probability with the PM

frequency incorporating specific constraints to reduce
equipment’s maintenance time, thus reducing the overall
downtime. As an outcome, the recommended intelligent
maintenance predictive model for mining shovels
maintenance will provide significant cost savings in
maintenance.

To deliver an optimal maintenance plan, DO consumes
mining shovel data. The data contains production history,
maintenance cost at various stages of shovel failure,
production plan, probability of predicted failure, loss due to
production, loss due to earlier maintenance before preventive
schedule or earlier than shovel’s Remaining Useful Life
(RUL) resource constraints. However, prior PM schedules
decreased the repair and maintenance costs, the value
proposition of combined cost benefits by combining PdM
and PM maintenance schedules were missing. In brief, the
current study bridges the gap by proposing an optimisation
model to increase mining equipment’s availability and reduce
cost pressures. Furthermore, an experiment with actual
shovel data was performed to derive the core objective of
maintenance time reduction by reinforcing the model.
METHODS

Efficient integration of Information Technology (IT) and
Operational Technology (OT) systems renders data in real-
time or at a specific frequency harnessed to develop
meaningful insights. For example, unique Independent
Software Vendors (ISVs) systems Fleet Management
produces and stores equipment health and performance data
(Kruczek et al. 2019) (Mi et al. 2020). On the one hand, if the
mining enterprise can get real-time sensor data, RUL
calculation is more apparent if the company does not have
rainbow fleets (Chen et al. 2020). On the other hand, the
harnessing of historical data is simpler to determine the RUL.
As per Wang et al.’s comprehensive and structured analysis
of numerous statistical methods can be typically
incorporated for the ML techniques development for
survival analysis of equipment. These acumens and
intelligence provide a framework for the selection of the
statistical model for developing an approach for determining
the survival days (Wang et al. 2019). The extensive usage of
the semi-parametric model of Cox PHM and its variants in
PdM is due to its applicability in modelling censored and
uncensored data. The Cox PHM reveals the relationship
between reliability and survival time. It further analyses the
relationship between time-independent covariates and the
hazard function (Chen et al. 2020). Researchers propose
additional studies to leverage PHM variants for equipment
RUL based on the data availability and applicable scenarios.
These comprehensive insights lead to the selection of Cox
regression to compute the equipment’s data available for our
equipment survival analysis.

Shovel data was collected for two years from India’s coal
mines to perform the analysis and modelling. The data

Fig.1: Maintenance activities in % of time
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comprises equipment id, hours of operations, equipment
failures, payload, trips, marching hours, idles hours,
utilisation, age, and availability shift-wise. The extent of
16000 records of equipment performance of ten equipment
across three shifts was available for analysis. The model
utilises this data to develop a predictive model and optimise
five mining shovels of mean age 9056 days for RUL, OEE and
OTE computation. The censored data is 58%, and the mean
breakdown is 4.598 hours, mean work hours 1.567, mean
march hours 0.461, mean idle hours 1.375, in a shift of 8 hours.

From these data, first, the survival function from the
historical data is calculated. The shovel operation and failure
hours data are analysed using IBM-SPSS Modeler 18.1
(statistical tool). The Cox regression is employed to
determine the survival function of the equipment. Each
shovel’s survival function helps us predict the equipment
failure in failure days with the desired confidence intervals.
The Cox regression model is shown in Eq. 1.

h(t) = h0(t) exp (1 X1+2 X2 + · · · + n Xn) ... (1)
where h(t) is the expected hazard at time t, h0(t) portray the
baseline hazard and represents the hazard when all the
predictors (or independent variables) X1, X2 … Xn are equal
to zero. The model estimates 1, 2,…, n based on the
collected data. The baseline hazard h0(t) which is a generic
function, and estimates the maximum likelihood was put
forward by Breslow (Breslow 1975).
1. Variable(s) entered at step Number 1: March hour
2. Variable(s) entered at step Number 2: Breakdown hour
3. Variable(s) entered at step Number 3: loads/trips

From Table 1, we can interpret that as the significance
value of breakdown hours, idle hour, and the trips/loads are
less than 0.05. Therefore, these independent variables are
significant in determining the survival days. Age is the most
significant variable, followed by trips, and then followed by
idle hours. Another uncomplicated way to decipher this is by
using a confidence interval (CI). If both lower and upper

bound have the same symbols (both positive in this case), it
will be significantly distinct from zero. The closer the values
of the two bounds, the more established the confidence
interval can be, which is a desirable outcome. Currently, the
three variables with high statistical significance emphasise
that our baseline model has excellent predictive power. If we
dissect a substantial sample size of shovels, it will improve
the number of breakdown events and marginally increase the
model and confidence interval bounds. The investigation
symbolises a negative correlation of idle hours with failure,
which is anticipated because the more unproductive a
shovel’s time, the less likely it is to fail.

Table 2 shows that the Chi-square is significant; we can
conclude that the difference between the baseline and new
models is also significant. Loads/trips contribution is higher
than breakdown hours and march hours in making sure that
the new model is better than the baseline model. However,
the other two variables, breakdown hours and loads/trips, are
increasing Chi-square values across steps and blocks,
indicating that the model’s accuracy will improve when we
include these predictor variables. To summarize, the Chi-
square value implies that the new model is good compared to
the baseline model.

Fig.2 deciphers the shovels’ survival days; RUL is defined
as the duration left for the occurrence of breakdown based
on the probability threshold of failure, i.e., after how many
days the cumulative probability falls to 80%. This predictive
failure day from survival data is utilised in combination with
the PM frequency to optimize the maintenance schedule, to
further minimizing the costs (van Nunen et al. 2018) (Civerchia
et al. 2017). RUL is extensively used to derive the failure’s
occurrence from instating the appropriate action to calculate
the equipment’s reliability in mines. Fig.3 illustrates the age
in days vs the survival days of shovels and it is inferred that
throughout the useful life the breakdown and loads is a prime
measure for failures. To minimize the cost of maintenance loss
and production loss, the optimal maintenance day in a time

TABLE 1: VARIABLES IN THE EQUATION

Vars  SE Wald df Sig. Exp() 95% CI Exp()
Lower Upper

Breakdown hrs. -0.107 0.030 12.345 1 0.000 0.899 0.846 0.945
March hrs -0.069 0.018 14.293 1 0.014 0.934 0.901 0.967
Loads/trips 0.003 0.001 5.161 1 0.023 1.003 1.000 1.005

TABLE 2: SIGNIFICANT VALUES OMNIBUS TESTS OF MODEL COEFFICIENTS

Step -2LgLhd Overall (score) Chg. from pre-step Chg. from pre-block

Chi-sq df Sig. Chi-sq df Sig. Chi-sq df Sig.

1a 8305.616 18.351 1 0.000 20.055 1 0.000 20.055 1 0.000
2a 8289.977 34.061 2 0.000 15.639 1 0.000 35.693 2 0.000
3c 8284.768 39.231 3 0.000 5.209 1 0.000 40.903 3 0.000
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horizon must be determined. The optimized schedule is
generated based on the PM day and the predicted failure day
based on the survival analysis. These schedules are
governed by cost minimization metrics (PM cost, PdM cost,
production loss) which meets the production and cost
objectives coupled with constraints resources, workshop, and
weather insights. This optimization generates an actionable
maintenance plan based on these objectives and constraints
and reduces the total maintenance downtime.

A mathematical formula for cost optimization is defined for
shovels schedule optimisation. The notations employed for
formulation are illustrated in Table 3. The objective of the
problem is to minimize the total cost. The total cost $TC$
considers the following costs:
• Cost of lost production if failure before the scheduled

maintenance ... (2)
Cost_PLMi,t = Prodvalue_uniti,t  prob_breaki,t 
(Prodi,t – Capi  (l–RLi,t)), iI, tT

Fig.2: Plot of survival days vs survival prob. of shovels

Fig.3: Plot of age vs survival days of shovels

TABLE 3: NOTATIONS FOR OPTIMISATION FORMULATION

Sets
T Set of planning horizon
I Set of shovel machines
Parameters
RLi,t Repair loss in % for machine i in time t
MLi,t Maintenance loss in % for machine i in

time t
Capi Maximum production (prodn.) capacity of

machine i
Prodi,t Actual prodn. by machine i in time t
Cost_PLMi,t Cost of lost prod. (in $) if failure before

scheduled maintenance i in time t
Cost_PLi,t Cost of lost production due to maint. (in

$) i in time t
Cost_EMi,t Cost of maintenance too early (in $)
Prob_breaki,t Probability of breakdown of machine i in

time t based on OEM
Prob_ruli,t Failure prob. of machine i in time t based

on RUL
Cost_repairi Cost per repair for machine (in $) i
Cost_maintenancei Cost per maintenance (in $) for machine i
Cost_earlylifei Cost of early replacement (in $) for

machine i
Prodvalue_uniti,t Production value (in $) per day of

machine i in time t
lifei,t Expected life of machine i in time t
Wt If weather is favourable = 1 otherwise 0 in

time t
Fi No. of PMs during the planning horizon

(in $) for machine i
Decision variable
maintenancei,t If maint. is performed on machine i at

time t {0,1}
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• Cost of repair if breaking before maintenance ... (3)
Cost_repairi,t = Cost_repairi   Prob_ruli,t, iI, tT

• Cost of maintenance ... (4)
Cost_maintenancei,t = Cost_maintenancei  (1–
prob_rul  maintenance i,t,  iI, tT

• Cost of lost production due to maintenance ... (5)
Cost_PLi,t = Prodvalue_uniti,t  Prob_breaki,t
(Prodi,t – Capi  (1–MLi,t)), iI, tT

• Cost of maintenance too early ... (6)
Cost_EMi,t = Cost_earlylifei,t x max {lifei,t – t, 0},
iI, tT

• Objective minimum total cost ... (7)
Objective : Min total cost =
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Fig.4: Step by step process flow of shovel optimisation and IF calculation

• Constraint 3: An equipment should be maintained
when weather is favourable (10)
maintenancei,t = TtliW ti  ,, 

For the model formulation, as in Fig.4 two types of
maintenance are considered. The first maintenance type is
PM as per the OEM recommendation. The second type of
maintenance is PdM which is based on the probabilistic
failure, which is the second type of maintenance. PdM is
derived from the Cox regression model, which gives a survival
probability distribution function.

The formulation of the problem is a MILP, which is
developed and implemented in IBM ILOG CPLEX 12.10 using
python. To demonstrate and implement the optimisation
results, haul trucks data from Indian mines were ingested. The
model for the expected output of “optimised Maintenance
Schedule” (allocation of maintenance date for specific
equipment id) is developed based on the constraints as
mentioned in Eq.8, 9 and 10.

Fig.5 demonstrates the PM schedule recommended by
OEM. For a piece of given equipment, we assume a
probability distribution for PM. This solution brings flexibility
to move around PM based on the availability of workshop or
weather conditions; simultaneously if PM moves away from
the target date, the system imposes a cost penalty to minimize
the target PM’s deviation. The PdM is based on the survival
analysis shown in Fig.6, which depicts days of survival
against survival probability. These results are derived based
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TABLE 4: NOTATIONS FOR OPTIMISATION FORMULATION

Equipment (Shovel) Id SH– SH– SH– SH– SH–

Capacity per day (tons) 6000 5800 5900 5950 4400
Prev. maint. freq. (days) 15 15 15 14 15
Prev maintenance loss (%) 15 15 15 15 15
Maintenance cost ($) 10 10 10 10 10
Repair loss (%) 21 21 21 21 21
Repair cost ($) 20 20 20 20 20
Loss per life day (tons) 6000 5800 5900 5950 4400
Production value unit 10 10 10 10 10
Prev. maint. time (hrs) 3.5 3.5 3.5 3.5 3.5
Pred. maint. time (hrs.) 5 5 5 5 5

maintenance, it results in production
loss and the spare part’s under-
utilised life.

The shovel data is shown in Table
4. The Table 4 illustrates the daily
production capacity (Tonnes/day),
PM frequency (days), maintenance
loss (%), maintenance cost ($), repair
loss (%), repair cost ($), loss of life per
day ($/Ton), production value ($)),
planned PM time (in hours) and
planned repair maintenance time
(hours), which are the essential data
for the optimization model. The repair
cost and repair loss have a higher
impact than maintenance cost and
maintenance loss, which occurs due to
predictive and PM. Further,
unconstrained production based on
historical production and planned
production is ingested into the
mathematical optimization model.
Weather insights for the planning
horizon are considered to capture any
variability due to rain, storm, and fog.
Additionally, the maintenance
workshop can only accommodate one
shovel per day. These sets of data have
been used for the cost optimization of
shovel’s in combination with data of
Figs.5 and 6.

Based on the objective function,
the total cost of maintenance is
minimized for a planning period of
thirty days. Therefore, our objective
function attempts to club both PM
and PdM so that the impact of

Fig.5: Preventive maintenance schedules of mining shovels

Fig.6: Predictive maintenance schedules of mining shovels

on the data collected and survival models of the four haul
trucks. The cut-off probability of survival is 80% to 85%, used
as one of the optimisation models’inputs. The range of 80%
to 85% is determined based on the mining industry’s current

best practices. If we keep a high cut-off survival probability,
then the mining enterprise ends up with intensive equipment
damage, a costlier affair for maintenance. Additionally, when
a low survival probability is considered for shovel
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downtime (production loss) is minimized. Simultaneously, it
penalizes any early PM because early PM (before the target
date) has a higher total cost. Hence, the objective function
finds a sweet spot (minimum cost) to accommodate both PdM
and PM such that all the business constraints are satisfied.
RESULTS

The optimised schedule is represented by the Fig.8
determining the equipment maintenance on 10th, 15th , 8th,
7th and 4th day respectively for shovels SH-0P1, SH-0P2, SH-

The impact factor of OTE is calculated leveraging Eq. 11
to Eq. 27 and the notations as in Table 5. The formulations
are represented as in the equations below.

• OTE of group of shovels based on operation time ... (11)

• Total scheduled planned downtime of
equipment i in time t ... (12)

• Availability of equipment i in time t ... (13)

• Load performance of shovel i in time t (14)

• Net production time of equipment i in time t ... (15)

• PM wrench time: 35% of PTMi,t time in hours, per

TABLE 5: NOTATIONS FOR MINING EQUIPMENT OEE & OTE FORMULATION

                         Parameters
TTi,t = Total time of equipment i in time t
TWi,t = Total working time of equipment i in time t
TBi,t = Total unplanned breakdown downtime of equipment i in
time t
PMTi,t = Total planned preventive schedule (PM) downtime of
equipment i in time t
PdTi,t = Total planned predictive schedule (PdM) downtime of
equipment i in time t
TIi,t = Total idle time of equipment i in time t
TSi,t = Total scheduled maintenance time for equipment i in time t
TMi,t = Total marching time for equipment i in time t
TOi,t = Total other time for equipment i in time t
PPLi,t = Planned loads for equipment i in time t
APLi,t = Actual loads for equipment i in time t
ATi,t = Availability of equipment i in time t
Pi,t = Performance of equipment i in time t
Qi,t = Quality per formance of equipment i in time t
OEEi,t = OEE time based i in time t
OTEi,t,max = OTE time base d i in time t a fte r optimis ation
OTEi,t, min = OTE time based i in time t before optimisation
IFi,t = IF of shovels i in time t

Fig.7: Total optimised maintenance cost of mining shovels

0P3, SH-0PR and SH-0VK.The
mathematical optimization generates
output, an optimized maintenance
schedule by solving formulation and
ingesting data derived based on
minimum total cost as shown in Eq.7.
The total cost plot, as in Fig.7,
signifies the behaviour of the
objective function. It shows the total
cost function of five shovels: SH-0P1,
SH-0P2, SH- 0P3, SH-0PR and SH-
0VK. The cost curve of individual
shovel’s illustrates the minimum
optimized cost when the combined
maintenance is scheduled to satisfy all
the constraints and dependencies:
resources, weather, production plan,
maintenance loss, and repair loss.

Fig.8: Optimised shovel maintenance schedule
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maintenance PMWi,t = 0.35* PMTi,t ... (16)
• PM other time: 65% 3of PTMi,t time in hours, per

maintenance PMOi,t = 0.65* PMTi,t ... (17)
• PdM wrench time: 35% of PdMi,t time in hours,

per maintenance PdWi,t = 0.35* PdTi,t ... (18)

• PdM other time: 65% of PdMi,t time in hours,
per maintenance PdOi,t = 0.65* PdMi,t ... (20)

• Combined other time hours (higher value of ... (21)
PMOi,t  and PdOi,t per schedule
COTi,t = PdOi,t

TABLE 6: INPUT PARAMETERS FOR OEE BENEFITS CALCULATION

Input parameters for calculations

Notation Eq/parameters SH-OPl SH-OP2 SH-OP3 SH-OPR SH-OVK

Capi Planned cap tonnes/day 6000 5800 5900 5950 4400
TCapi,t Total planned cap tonnes/30days 180000 174000 177000 178500 132000
TTi,t Total time 30 days (in hs.) 720 720 720 720 720
TBi,t Total BdM Hs. 30 days 346 430.94 335 430.98 484.8
TMi,t Mean march Hs.30 days 57.9 30.02 70 36.36 40.54
TIi,t Mean idle Hs. 30 days 153.2 89.58 146.94 79.48 122.18
TWi,t Mean work Hs. 30 days 154.4 160.96 159.56 164.68 63.98
TOi,t Mean other time Hs. 30 0 0 0 0 0
PMTi,t First PM Hs. 15 days 3.5 3.5 3.5 3.5 3.5
PdMi,t Total PdM Hs. 30 days 5 5 5 5 5
TSi,t Total planned maint. hrs. 8.5 8.5 8.5 8.5 8.5
PMT2i,t Second PM Hs. 15 days 3.5 3.5 3.5 3.5 3.5

TABLE 7: CALCULATED OEE AND IF OF MINING SHOVELS

Equipment - mining shovels

Notation Calculations for shovels SH-OPl SH-OP2 SH-OP3 SH-OPR SH-OVK

PMWi,t PM wrench t 35%*PMWi,t 1.225 1.225 1.225 1.225 1.225
PMOi,t PM other t 65%*PMWi,t 2.275 2.275 2.275 2.275 2.275
PdWi,t PdM wrench t 35%*PdMi,t 1.75 1.75 1.75 1.75 1.75
PdOi,t PdM other maint. t 65%*PdMi,t 3.25 3.25 3.25 3.25 3.25
COTi,t Combined other t PdOi,t 3.25 3.25 3.25 3.25 3.25
TSi,t Total planned maint. Hs. 8.5 8.5 8.5 8.5 8.5
TSOi,t Optimized planned maint. Hs. 6.225 6.225 6.225 6.225 6.225
AWHi,t Additional work Hs. per opt 2.275 2.275 2.275 2.275 2.275
PPi,t Production T per H. 869.702 632.747 624.987 745.567 1420.147
PBi,t Production in T bef opt. 134281.98 101847 99723 122780 90861
PAi,t Production in T aft opt. 136260.56 103286.5 101144.85 124476.17 94091.83
ABi,t Availability bef opt. 0.508 0.39 0.523 0.39 0.315
PBi,t Performance bef opt. 0.746 0.585 0.563 0.688 0.688
QBi,t Quality net t bef opt. 0.422 0.574 0.424 0.587 0.282
AAi,t Availability aft opt. 0.511 0.393 0.526 0.393 0.318
PAi,t Performance aft. opt. 0.757 0.594 0.571 0.697 0.713
QAi,t Quality net t aft opt. 0.426 0.577 0.427 0.59 0.289
OEEBi,t OEE bef opt. 0.16 0.131 0.125 0.157 0.061
OEEAi,t OEE aft opt. 0.165 0.135 0.128 0.162 0.066
OEEi,t, inc Min OEE % increase aft 2.969 2.847 2.872 2.782 7.238
IF % IF Factor in percentage 49.28% computed as per Eq.27
aft : after, bef: before, opt.: optimisation, Hs.: hours, H.: hour, t: time, T: tonnes, maint. Maintenance, %: percentage
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• Total maintenance hours (sum of PMTi,t,
PdMi,t for 2 schedules of PM and 1 ... (22)
schedule of PdM in 30 days
TSi,t = 2* PMTi,t + PdMi,t

• Combined total maintenance hours ... (23)
(sum of PdWi,t , PMWi,t and PdOi,t ) 1 combined
schedule per optimisation
TSOi,t = PMOi,t + PdMi,t + COTi,t

• Total savings of maintenance hours per optimisation
run AWHi,t = TSi,t – TSOi,t ... (24)

• OTE of group of shovels after optimisation (25)

• OTE of group of shovels before optimisation ... (26)

• IF group of shovels based on operation time
due to optimisation ... (27)

OEE and IF calculation is calculated as defined as per the
notations illustrated in Table 5 and data using Table 6 and
the formulas from Eq.11 to Eq.27. The objective of the
formulations is to represent various attributes of OEE and IF
calculation for mining equipment, essentially shovels and is
represented in Table 7.

The OEE is increased in the range of 2.7 % to 7.2 % which
is quite significant in the mining industry. The all-inclusive IF
has increased by 49 % for a month. These improvements are
as per the objectives of productivity improvement.

Conclusions
This article’s inherent objective was to maximise benefits by
minimising maintenance time, reducing production and
maintenance loss through optimisation. An innovative DO
model achieved this objective by leveraging exponential
technologies by combining preventive and predictive
maintenance with constraints. The combined PM and PdM
can be best utilised to reduce the maintenance time and
improve the equipment’s health score and extend its useful
life which is demonstrated using OEE and IF improvements.
The primary finding is that equipment age is the most
significant variable, followed by trips, next by idle hours. The
objective of maintenance time reduction by optimisation is
achieved by the application DO model.

These optimised schedules can be further complemented
by real-time integration with ERP and COTS systems to derive
maximum benefits to address the end-to-end maintenance
operations value chain. The blended optimised maintenance

schedule provides a unique path to increase the availability
and utilisation of the haul trucks and provides the additional
potential to scale up. Some industry-specific nuances need
to be incorporated in the model to leverage and deploy the
combined optimised solution model to other industry
segments. The advent of Quantum Computing and leveraging
its components of molecular modelling, optimisation, risk
assessment of catastrophic risk, and AI for better prediction
is pertinent for developing the mining industry’s
maintenance processes and scaling its benchmarks compared
to the manufacturing industry.

Overall, the maintenance schedule optimisation model
provides foresight into improving process scope levers by
horizontal and vertical integration across the maintenance
value chain to create a sustainable mining enterprise.
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