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The stability of a horizontal sparsely packed porous layer
of a ferromagnetic fluid heated from below is examined when
the fluid layer is subjected to time-dependent magnetic field
modulation. The effects of the oscillating magnetic field are
treated by a perturbation expansion in powers of the
amplitude of the applied field. The onset criterion is derived
based on the condition that the principle of exchange of
stabilities is valid. The stability of the system, characterized
by a correction Rayleigh number, is computed as a function
of magnetic, porous parameters and the frequency of
magnetic field modulation. It is found that the onset of
magnetic field modulated ferroconvection can be delayed or
advanced by controlling these parameters. The effect of
various parameters is found to be significant for moderate
values of the frequency of magnetic field modulation. The
problem throws some light on external means of regulating
convection in ferromagnetic fluid applications.

Keywords: Ferromagnetic fluid, magnetic field modulation,
perturbation method, stability, porous medium.

1.0 Introduction

Ferromagnetic fluids (also known as ferrofluids or
magnetic fluids) are a form of smart liquid that has been
polarised by magnetic forces. Ferromagnetic fluids are

made through immersing tiny magnetic nanoparticles in a
non-magnetic liquid carrier and encapsulating it inside a
molecular solvent to prevent particle coagulation in the
presence of an applied external magnetic field. Many experts
and industrialists, however, are intrigued by colloidal
magnetite, the most carefully researched ferrofluid, owing to
its applications ranging in heat transfer, bio-medical and
aircraft, to highlight a few. Popplewell (1984), Rosensweig
(1997), Berkovsky et al. (1993), Horng et al. (2001).

The utilization of ferroconvection to heat transfer in a
layer enclosing ferrofluid is analogous to standard Benard

convection and has sparked considerable interest in the
literature due to its potential utility as a heat exchanger.
Finlayson (1970) first detailed how a horizontal surface
containing ferrofluid with fluctuating magnetic susceptibility
yields a non-uniform magnetic body force, which results in
thermomagnetic convection. This type of thermal movement
may be advantageous when classic convection is inadequate,
such as in small micro-scale apparatus or in low gravity
situations.

Gupta and Gupta (1979) interrogated thermal instability in
a magnetic liquid surface with centrifugal acceleration
subjected to vertically penetrating magnetic field, proving that
overstability is impossible if the Prandtl number is greater
than one. Gotoh and Yamada (1982) addressed the linear
convective unsteadiness of a magnetic liquid medium warmed
from below and sandwiched between two horizontal
ferromagnetic blocks. As trial functions, Legendre
polynomials are utilised, and the Galerkin method is
employed. The magnetization of the boundaries, as well as
the inhomogeneity of fluid magnetization, are demonstrated
to reduce the critical Rayleigh number, and the effects of
magnetization and buoyancy forces are shown to compensate
for each other. Stiles et al. (1992) studied the
thermoconvective instability of a single surface containing
ferromagnetic fluid bound within inflexible horizontal planes
at room temperature and driven to a moderate homogeneous
externally supplied magnetic field in the vertical position.
When heated downward, the roll cells’ critical gravitational
and magnetic Rayleigh numbers, as well as their critical
horizontal wavelength range, correspond with those of
Finlayson (1970).

Aniss et al. (2001) investigated the impacts of a time-
sinusoidal magnetic field on the onset of convection in a
horizontal magnetic layer of fluid heat gained from above and
enclosed by isothermal non-magnetic walls. Using a first order
Galerkin method, the controlling linear system is reduced to
the Mathieu equation with a dissipation factor. As a
consequence, the Floquet theory is used to determine the
convective threshold in the free-free and rigid-rigid situations.
The possibility of generating a conflict between harmonic and
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sub-harmonic modes is addressed at the onset of convection.
Kaloni and Lou (2005) calculated theoretical temperature
instability of a relatively thin surface of ferrofluid that is
heated up from underneath under the action of changing
magnetic fields a priori. The eigenvalue of the equation is
estimated by using floquet hypothesis, Chebyshev
pseudospectral strategy, and QZ technique. For the
quasistationary system, both free-free and rigid-rigid
boundary conditions are studied, whereas only the rigid-rigid
boundary condition is addressed for the model with internal
rotation.

In their studies, Engler and Odenbach (2008) Engler and
Odenbach (2009) looked at the features of the onset of
thermomagnetic convection in ferrofluids being controlled by
fixed and frequently varied magnetic fields. In the instance of
a static magnetic field, the commencement of convection is
determined by the strength of the magnetic field, whereas in
the context of a time-modulated magnetic field, an additional
reliance on the frequency of magnetic field fluctuation is
shown. In general, the experimental results support theoretical
predictions about the influence of static and time-modulated
magnetic fields on the onset of convection. Matura and Lücke
(2009) analyzed how a time-periodic and essentially constant
magnetic field affects the linear and non-linear durability of a
ferrofluid layer heated from above and below. The floquet
theory is being used to define the stability bounds of the
static conductive phase for a harmonic and subharmonic
output. Complete simulation studies employing the finite
difference method were used to produce nonlinear convective
conditions. The effects of the lowest and maximum
modulation frequencies on the stability boundaries and
potential nonlinear oscillations are investigated.

With a vertically applied non-uniform time dependent
magnetic field, Bhadauria and Kiran (2014) studied heat
transport through an electrically conducting layer of fluid
using a weakly nonlinear approach. The Ginzburg-Landau
non-autonomous formula is used to determine the thermal
expansion coefficient, and Wolfram Mathematica 8 will be
used to accomplish it. Suitability was determined using the
Runge–Kutta–Fehlberg technique. The Nusselt number is
calculated based on a variety of system parameters, with the
influence of each parameter on heat flow being highlighted.
Heat transfer is facilitated by increasing the magnetic Prandtl
number and modulation amplitude. The Chandrasekhar
number modulation frequency is employed to maintain the
system steady. Magnetic modulation has also been
demonstrated to either increase or decrease heat transmission.
Kiran et al. (2018) addressed the oscillatory pattern of chaotic
magneto-convection in a magnetic force dependent with
regard to temporal variations, which would be a follow-up to
Bhaduria’s research. The conformation and generalizability of
the findings are tested by comparing the ND Solve
Mathematica/simulink software solution with the RKF45
method, and an acceptable approximation is found. In

asynchronous mode, magnetic modulation operates better
than in stationary mode. Keshri et al. (2019) used a
mathematical technique to predict the temperature profile
upon an ionised couple stress liquid with an internal heating
under a magnetic force variability. The Prandtl number,
internal Rayleigh number, couple stress parameter, and
magnetic Prandtl number exert unfavourable impact on the
system, meanwhile the Chandrasekhar number has a
significant impact. As a consequence, the couple stress
parameter and internal Rayleigh number enhance the heat
transfer process.

Temperature distribution across fluid-saturated porous
materials has sparked a great deal of interest due to its
inherent characteristic as well as its increasing application in
science and innovation, such as tidal energy resource usage,
nuclear waste elimination, building thermal shielding, waste
removal in aquifers, solid matrix compact heat exchangers,
drying processes, and so on. The discipline’s work was
headed by Horton and Rogers (1945) and Lapwood (1948),
and the entire problem is now known as the Horton-Rogers-
Lapwood or Darcy-Benard problem. In this conventional
composition, a porous substance is sandwiched between two
flat surfaces of similar temperature and heated from below.
Several authors, nonetheless, have gotten further depth on
the subject, and Nield and Bejan (2006) and Vafai (2015)
provide excellent summaries of the growing corpus of
research in the field.

In the instance of a time-dependent buoyancy force
caused by gravity modulation, the stability of a horizontal
fluid and fluid-saturated porous layer heated from below is
investigated by Malashetty and Padmavathi (1997). The
gravity modulation has a considerable impact on the system’s
stability limitations, according to a linear stability study. As a
function of modulation frequency, Prandtl number, and
porosity parameter, the change in the critical Rayleigh number
is computed. The low frequency g-jitter has been discovered
to have a major impact on the system’s stability. As
degenerate examples of the Brinkman model, the Darcy limit
and viscous flow limit are derived. Govender (2004) used the
linear stability theory to examine the effects of gravity
modulation on convection in a homogeneous porous layer
heated from below analytically. The gravitational field has a
constant component and a sinusoidally changing component,
which is analogous to a vertically oscillating porous layer
exposed to constant gravity. The linear stability findings are
provided for the situation of low amplitude vibration, in which
it is demonstrated that raising the vibration frequency
stabilises the convection.

Malashetty and Basavaraja (2004) used a linear stability
analysis to investigate the influence of time-periodic
boundary temperatures on the beginning of double diffusive
convection in a fluid-saturated anisotropic porous media. The
critical values of the thermal Rayleigh number and wave
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number are computed using a perturbation approach based
on a tiny amplitude of the applied temperature modulation.
As a function of frequency of modulation, viscosity ratio,
anisotropy parameter, porous parameter, Prandtl number,
diffusivity ratio, and solute Rayleigh number, the correction
thermal Rayleigh number is computed. At intermediate
frequencies, the influence of several physical characteristics
is shown to be considerable. They discovered that by fine-
tuning the frequency of wall temperature modulation, they can
accelerate or postpone the beginning of double diffusive
convection. The impact of various parameters on the system’s
stability is examined.

Recently, Mahajan and Parashar (2020) investigated the
linear and weakly nonlinear instability in a rotating anisotropic
magnetic fluid layer, When the layer is internally heated and
the solid matrix and fluid are not in local thermal equilibrium.
To investigate the transient behaviour of the Nusselt number
at the lower boundary, the Runge–Kutta–Gill numerical
technique is employed to solve the finite-amplitude problem.
The Taylor number and thermal anisotropy parameter were
discovered to have a stabilising impact on convection. Heat
transfer decreases as the Taylor number and thermal
anisotropy parameter rise.

The topic of convection control is relevant and interesting
in a wide range of ferromagnetic fluid applications, and it is
also theoretically hard. The unmodulated Rayleigh-Bénard
issue of convection in a ferromagnetic fluid has received a
lot of attention. However, significant attention has been
devoted to the combined effect of magnetic field modulation
and sparsely packed porous medium on the onset of
ferroconvection in a horizontal layer. We want to give a
fundamental knowledge of the function of harmonic vertical
vibrations, porous parameter, and magnetic factors in
controlling natural convection.

with gravity,  acts towards down, g is the acceleration
due to gravity. The upper and lower surfaces are retained at
uniform temperature gradient T. A Cartesian frame of
reference is chosen with the origin in the lower boundary and
the z-axis vertically upwards. The Boussinesq approximation
is assumed to investigate the density variation in the fluid
layer.

... (1)

... (2)

... (3)

... (4)

... (5)

... (6)

Various physical quantities appearing in Eqs. (1) through
(6) have their usual meaning Finlayson (1970), Thomas and
Maruthamanikandan (2018).

The relevant maxwell equations are

... (7)

where  is the velocity of fluid,  the density, 0 a reference
density, p the porosity, p the pressure, f the dynamic
viscosity, f is the effective viscosity, 0 the magnetic
permeability, T the temperature,  the total magnetic field, 
the magnetization,  the magnetic induction, K1 the thermal
conductivity,  the coefficient of thermal expansion, Ta a

reference temperature, , where

0CV, H the specific heat at constant volume and magnetic
field, m is the differential magnetic susceptibility and Km is
the pyromagnetic coefficient. The lower and upper surface

temperatures respectively are  at z = 0 and

 at z = d.

The external magnetic force is modulated harmonically in
time by varying the magnetic field acting vertically upward.

where H0 is the uniform magnetic field,  is the small

Fig.1. Schematic diagram

2.0 Formulation of the problem
Consider a ferromagnetic fluid layer placed in the middle of
two horizontal infinite planes positioned at z = 0 and z = d
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amplitude,  is the frequency and t is the time.

3.0 Basic state
The quiescent basic state is represented by

... (8)

In the basic state, the pressure, the temperature, the
magnetic field, magnetic induction and magnetization
equations are as follows

... (9)

with  and

4.0 Linear stability analysis
The perturbation technique is used to examine the stability
of the basic state, we superpose immeasurably small
perturbations on the basic state of the form

... (10)

where primes represent perturbed quantities. Substituting Eq.
(10) into Eqs. (1) – (7) and using basic state solution, we
obtain the following equations

... (11)

... (12)

... (13)

... (14)

... (15)

where , 
, with ' being the magnetic potential. In Eq. (13)

pressure term can be eliminated by applying curl twice on it
and then render the resulting equation and Eqs. (13) – (15)
dimensionless over the following transformations

 
and

 

to obtain (after ignoring the asterisks)

... (16)

... (17)

... (18)
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where ,  is the frequency of modulation,

 and .

 The dimensionless parameters Kaloni and Lou (2005),
Thomas and Maruthamanikandan (2018) are Pr the Darcy-
Prandtl number, R the Darcy-Rayleigh number, M1 the
buoyancy-magnetization parameter, M2 the magnetization
parameter, RM1 the magnetic Rayleigh number, Da  the porous
parameter and  the Brinkman number.

 The parameter M2 is equivalent to the order of 10–10

Finlayson (1970). Hence M2 can be omitted in further
calculations. The suitable boundary conditions are
Malashetty and Padmavathi (1997).

 at z = 0, 1 ... (19)

 It is suitable to state the whole problem in terms of the
vertical component of the velocity W. Upon combining Eqs.
(16)–(18), we obtain the following equation.

where,   and

where  The boundary conditions in
Eq.(19) can also be expressed in terms of W in the form
Chandrasekhar (1961).

 at z = 0, 1 ... (21)

5.0 Method of solution
The eigenfunctions, W and the eigenvalues, R associated with
the above eigenvalue problem for a modulated magnetic field
that is different from the constant magnetic field by a small
quantity of order . We therefore assume the solution of Eq.
(20) in the form Veneziant (1969).

... (22)

where is the critical Darcy-Rayleigh number for the
corresponding unmodulated problem. The expression for the
Rayleigh number R0 is given by

... (23)

where  being overall horizontal wavenumber x
and x being wavenumbers in x and y directions respectively.

Following the analysis of Malashetty and Padmavathi
Malashetty and Padmavathi (1997), one obtains the following
expression for R2 (the first non-zero correction to R0)

... (24)

where

with

and

The Rayleigh number R at its critical value is calculated
upto O()2 by computing R0 and R2 at 0 = c , Thomas and
Maruthamanikandan (2013) where c is the value at which R0
is minimum. Supercritical instability occurs provided R2c is
positive. On the other hand, subcritical instability is said to
occur when R2c turns out to be negative.

6.0 Results and discussion
An analytical study has been undertaken on the influence of
time-periodic magnetic field fluctuation on the onset of
ferromagnetic convection in a horizontal porous layer. The
corrected Darcy-Rayleigh number R2c is found to be
proportional to the modulation frequency , magnetic
parameter M1, Prandtl number Pr, porous parameter Da, and
Brinkman number , providing small amplitude variation, and
the regular perturbation technique would be used. Figs.2 to 5
shows the impact of these factors on the system’s stability.

At minimal values of , the usual view is that R2c is negligible.
This reveals that the modulated magnetic field seems to have a
destabilising impact. R2c becomes significant over moderate and
large values of  and so convection is delayed.

The influence of the buoyant magnetization parameter is
discussed in Fig.2. R2c clearly grows as M1 increases, as long
as  is minimal. If  is moderate and large, however, the
pattern reverses. In addition, the magnetic mechanism reduces
the impact of magnetic field variation. Furthermore, when M1
is large enough, the insignificant effect of M1 on stability may
be shown.
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Fig.3 outlines the impact of the Prandtl number Pr on R2c
with regard to . The value of R2c is reduced as incrementing
the value of Pr, provided  is small. Also, R2c shows same
effect, for moderate and large value of .

Figs.4 and 5 resemble the deviance in Da and  over the
critical correction Darcy-Rayleigh number, respectively. When
the values of Da and  are raised, R2c falls, showing that both
the factors have a convective influence on ferromagnetic
convection. However, if  is small enough, the Darcy number

Da and Brinkman number  shows destabilizing effect on the
system. Equivalently Da and  has a stabilizing effect when
 is large enough.

7. Conclusions
The effect of magnetic field modulation on ferromagnetic
porous medium convection is studied using the procedure of
regular perturbation. The investigation has led to the
following conclusions:

Fig.2. Variation R2c of with respect to  and M1 Fig.4: Variation of R2c with respect to  and Da

Fig.5: Variation of R2cwith respect to  and Fig.3: Variation of R2c with respect to  and Pr
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• Subcritical instability manifests by virtue of modulated
magnetic field for low frequency.

• Magnetic field modulation and the magnetic mechanism
have mutually opposed effect on the system provided the
magnetic field modulation frequency is small as well as
moderate.

• Prandtl number enhances the amplifying effect of
magnetic field modulation irrespective of the range of
frequency.

• Effects of magnetic force, porous medium and magnetic
field modulation disappear when the frequency of the
time-periodic magnetic force is considerably large.

In conclusion, the threshold of ferromagnetic porous
medium convection could be hastened or delayed through
magnetic field modulation by tuning the frequency of
magnetic field modulation. Hence the magnetic field
modulation and porous mechanisms could be exploited to
straighten out issues arising in situations involving
convective instability of ferromagnetic fluids.
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