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The effect of temperature modulation on the onset of Darcy
ferroconvection in a horizontal porous layer heated from
below is investigated. The analysis is based on the
assumption that the amplitude of the temperature
modulation is small enough compared with the imposed
steady temperature difference. The effect of the oscillating
temperature field is treated by a perturbation expansion in
powers of the amplitude of the applied field. The effect of
magnetic parameters, Vadasz number and temperature
modulation in the cases of symmetric, asymmetric and bottom
wall modulation, were discussed. The study divulges that
subcritical motion exists for symmetric temperature
modulation for low frequency. In the case of asymmetric and
bottom wall modulation only supercritical motion exists.

Keywords: Ferrofluid, porous media, magnetic field,
temperature modulation

1.0 Introduction

Thermo-mechanical interactions in fluids make the
possible onset of convection induced by externally
applied temperature gradients. The theory of thermal

instability in a horizontal fluid layer heated from below was
investigated by Lord Rayleigh (Rayleigh, 1916) and termed
that phenomenon of buoyancy-induced instability as
Rayleigh Bénard convection. The Rayleigh Bénard
convection that occur in fluids with magnetic particles is
named as ferroconvection. Ferrofluids are colloidal
suspensions of surfactant-coated magnetic particles in a
liquid medium, where the sizes of the particles are of several
nanometers. They exhibit a variety of unusual properties, for
instance, these fluids exhibit increased viscosity and apparent
density in magnetic field gradients. Due to its wide range of
applications in aerospace, industrial equipment designs,
loudspeaker audio, biomedicals etc. (Papell, 1964) and (Scherer
and Neto, 2005) a great effort has been devoted to the study

of ferroconvection during the past three decades.
The convective instability of a ferromagnetic fluid for a

fluid layer heated from below in the presence of uniform
vertical magnetic field has been first investigated by
Finlayson (Finlayson, 1970). Gupta and Gupta (Gupta, 1979),
Gotoh and Yamada (Gotoh and Yamada, 1982), Stiles and
Kagan (Stiles and Kagan, 1990) Russell et al (Russell et al,
1995) extended the pioneering work of Finalyson (Finlayson,
1970) to deal with the influence of a strong magnetic field and
large wave number convection. Maruthamanikandan (2003)
employed the Rayleigh-Ritz technique to examine the problem
of onset of Bénard convection in a horizontal layer of a
radiating ferromagnetic fluid. The effect of viscosity variation
on non-Darcy ferroconvection was paid attention by Soya
Mathew and Maruthamanikandan (2018) and
Maruthamanikandan et al. (2018).

The motivation for the study of convection in a fluid
saturated a porous medium has rich technological
applications in chemical engineering, geothermal activities, oil
recovery techniques and biological processes. Darcy (Darcy,
1856), Muskat (Muskat, 1937), Hubbert (Hubbert, 1956),
Whitaker (Whitaker, 1966) has developed the flow of fluids
through porous media and the equations pertaining to it.

In many systems, such as charges in electrostatic field
and ferromagnetic resonance, modulation of a suitable
parameter can have marked effects on the motion and can
result in increased stability of the system. Venezian (Venezian,
1969) investigated the stability of a horizontal layer of fluid
heated from below when, in addition a steady temperature
difference between the walls of the layer, a time-dependent
sinusoidal perturbation is applied to the wall temperatures. He
showed that at low frequencies the equilibrium state becomes
unstable because at that frequency the disturbances grow to
a sufficient size so that the inertia effect becomes important.
Malashetty and Wadi (Malashetty and Wadi, 1999)
investigated the stability of a Boussinesq fluid saturated
horizontal porous layer with time-dependent wall
temperatures. It is shown that the system is most stable when
the boundary temperature is modulated out of phase. Nisha
Mary and Maruthamanikandan (Nisha and
Maruthamanikandan, 2018) used regular perturbation
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technique to address the non-Darcy ferroconvection problem
with gravity modulation. It is made clear that gravity
modulation and magnetic mechanisms have opposing
influence. Maruthamanikandan et al (2021) explored the
combined effect of centrifugal acceleration and time-varying
boundary temperatures on the onset of convective instability
of a rotating magnetic fluid layer. It is established that, for
bottom wall modulation, rotation tends to stabilize the system
at low frequencies and the opposite is true for moderate and
large frequencies.

The critical Rayleigh number in thermal modulation
problems relies on the frequency of modulation and it proves
to be possible to hasten or delay the onset of instability by
tuning the frequency of modulation. In the present study we
aim at investigating the problem of convective instability on
a Darcy ferroconvection subject to time-periodic boundary
temperatures with the intention of exploring the possibility of
subcritical or supercritical motions.

2.0 Mathematical formulation
We consider a ferromagnetic fluid layer confined between two
infinite horizontal surfaces with height “d”. A vertical
downward gravity force acts on the fluid together with a
uniform, vertical magnetic field Ho. A cartesian frame of
reference is chosen with the origin in the lower boundary and
the z-axis vertically upwards.

The Boussinesq approximation is applied to account for
the effect of density variation. The governing equations
describing flow in an incompressible, non-conducting
magnetic fluid saturated porous layer are

... (1)

...  (2)

...  (3)

...  (4)

...  (5)

...  (6)

where =(u,v,w) is the fluid velocity, 0 is the reference
density, p is the porosity, t is the time, p is the pressure,  is
the acceleration due to gravity,  is the fluid density, f is the
dynamic viscosity, k is the permeability of the porous
medium,  is the magnetic field,  is the magnetic induction,
T is the temperature, 0 is the magnetic permeability,  is the
magnetization, K1 is the thermal conductivity,  is the thermal
expansion coefficient, CV,H is the specific heat at constant
volume and magnetic field, m is the magnetic susceptibility,
Km is the pyromagnetic coefficient and TR denotes the
reference temperature.

The relevant Maxwell equations are

... (7)

The surface temperatures are

... (8)

where T is the temperature difference between the two
surfaces in the unmodulated case,  the amplitude of the
thermal modulation, – the frequency and  the phase angle.

3. Stability analysis
On applying an infinitesimal thermal perturbation and
introducing the magnetic potential , we obtain the following
stability equations

... (9)

... (10)

Schematic of the problem
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... (11)

where, ,

,  is the

dimensionless frequency of modulation, 

and .

The dimensionless parameters are Va the Vadasz number,
R the Darcy-Rayleigh number, M1 the buoyancy
magnetization parameter, M3 the non-buoyancy magnetization
parameter.

The boundary conditions are taken to be

... (12)

At this point, we would like to indicate that it is convenient
to express the entire system of equations in terms of the
vertical component w of the fluid velocity. On combining
Eqns. (9) through (11), we obtain we obtain an equation for
the vertical component of the velocity w in the form

... (13)

4. Method of solution
The eigen functions and eigen values of the current study
differ from the classical Rayleigh-Bénard problem by
quantities of order . We therefore assume the solution of
Eqn. (13) in the form

... (14)

... (15)
where Ro is the critical Rayleigh number for the corresponding
unmodulated problem. The zero-order problem is equivalent
to the problem of Rayleigh-Benard ferroconvection in the
absence of thermal modulation. The expression for the
Rayleigh number is given by

... (16)

Following the analysis of Venezian (Venezian, 1969), we
obtain the following expression for.

... (17)

where 

It should be remarked that supercritical instability exists if
R2C is positive and subcritical instability occurs when R2C
becomes negative. We evaluate R2C for the following cases:

Case (i): the oscillating temperature field is symmetric so
that the wall temperatures are modulated in phase (=0).

Case (ii): the oscillating temperature field is asymmetric
corresponding to an out-of-phase modulation (=).

Case (iii): when only the temperature of the bottom wall is
modulated (=–i).

5.0 Results and discussion
The problem considered is that to obtain the criteria for the
effect of thermal modulation on the onset of convection in a
horizontal porous layer of a ferromagnetic fluid heated from
below. The effects of the oscillating temperature field are
treated by a perturbation expansion in powers of the
amplitude of the applied field. The shift in the critical Rayleigh
number is calculated as a function of the frequency of
temperature modulation, magnetic parameters and Vadasz
number. The analysis presented is based on the assumption
that the amplitude of the temperature modulation is small
enough compared to the imposed steady temperature
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difference. It should be remarked that the validity of the
results obtained depends on the range of the frequency of
modulation . When  is small, the period of modulation
becomes large so that the disturbances may grow to such an
extent that the finite amplitudes become significant. On the
other hand, in the limit as , the effect of modulation is
confined to a narrow boundary layer and outside this
boundary layer the basic temperature field has essentially a
linear gradient varying in time. Thus the effect of temperature
modulation is perceptible for moderate values of the
frequency of modulation  (Venezian, 1969). Three different
thermal excitations, viz., symmetric temperature modulation,
asymmetric temperature modulation and the bottom wall
temperature modulation are examined. The results of the
present study are illustrated with the help of Figs.1 through
9. The results pertaining to the bounding wall temperatures

Fig.1: Plot  of verses R2C with variations in relating to in M1
phase modulation

Fig.2: Plot  of verses R2C with variations in M3 relating to in-
phase modulation

Fig.3: Plot  of verses R2C with variations in Va relating to in-
phase modulation

Fig.4: Plot  of verses R2C with variations in M1 relating to out-of-
phase modulation

Fig.5: Plot  of verses R2C with variations in M3 relating to out-of-
phase modulation
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are modulated in phase are exhibited in Figs.1 through 3,
thermal excitation is asymmetric in Figs.4 through 6, only the
bottom wall temperature is modulated in Figs.7 through 9. The
parameter M1 is the ratio of magnetic force to gravitational
force. The parameter M3 measures the departure of linearity
in the magnetic equation of state. The Vadasz number Va
administrates the effect of porosity on flow in a porous media.

Since R2C is negative only for symmetric modulation, as
seen in Figs.1 through 9, it follows that subcritical motion is
non-existent for asymmetric and bottom wall modulation.
This could be a consequence of the symmetric modulation
resulting in a nonlinear imposed temperature gradient.

It is proved in Figs.1 through 3 that the parameters M1
and M3 incline to stabilize the system and the opposite
behaviour applies to Vadasz number Va. It is interesting to
spot that symmetric modulation can also lead to supercritical
instability for low Vadasz number ferrofluids provided the
frequency of modulation  is moderate in value.

As for the asymmetric modulation, as seen in Fig.4
through 6, the parameters M1 and M3 have the tendency to
destabilize the system and the opposite is true for Vadasz
number Va. As pointed out earlier, only supercritical instability
exists for out-of-phase modulation.

Figs.7 through 9 link to the bottom wall thermal
modulation. It is understood that the influences of the
parameters M1, M3 and Va are analogous to that of
asymmetric modulation.

Furthermore, moderate and large values of  happen to
scale down the influences of both magnetic and porous
mechanisms. Moreover, the effect of magnetic forces, porous
medium and temperature modulation disappear for sufficiently
large values of the frequency of the temperature modulation.
The problem throws light on external means of controlling
convection in ferromagnetic fluid applications.

Fig.6: Plot  of verses R2C with variations in Va relating to out-of-
phase modulation

Fig.7: Plot  of verses R2C with variations in M1 relating to bottom
wall modulation

Fig.8: Plot  of verses R2C with variations in M3 relating to bottom
wall modulation

Fig.9: Plot  of verses R2C with variations in relating to bottom
wall modulation
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6.0 Conclusions
The combined effect of thermal modulation and magnetic
parameters on the onset of convection in a densely packed
ferromagnetic fluid layer is investigated and the following
conclusions are drawn:
1. Subcritical motion exists for symmetric temperature

modulation provided the frequency is low and only
supercritical motions exist in the case of asymmetric and
bottom wall modulation.

2. The effect of symmetric temperature modulation is
destabilizing for small values of frequency and stabilizing
for moderate values of frequency.

3. The increase in magnetic forces is to reduce the symmetric
temperature modulation effect. The opposite is true for the
effect of the Vadasz number.

4. In the case of asymmetric and bottom wall temperature
modulation, the effect of temperature modulation is
stabilizing for small and moderate values of frequency.

5. In the case of asymmetric and bottom wall temperature
modulation, increase in magnetic forces is to hasten the
onset of ferroconvection and the opposite is true for the
effect of the Vadasz number.

6. In all the three cases, the magnetic, modulation and
porous effects disappear altogether provided the
frequency of temperature modulation is sufficiently large.

7.0 References
1. Lord Rayleigh, O.M. (1916): On convection currents in

a horizontal layer of fluid, when the higher temperature
is on the under side. Phil. Mag., 32, 529-546.

2. Papell S.S. (1964): Low viscosity magnetic fluid
obtained by the colloidal suspension of magnetic
particles. U.S. Patent no 3, 215, 572.

3. Scherer C. and Figueiredo Neto A. M. (2005):
Ferrofluids: Properties and Applications. Brazillian
Journal of Physics, 35 (3a).

4. Finlayson, B. A. (1970): Convective instability of
ferromagnetic fluids. Journal of Fluid Mechanics,
40(4), 753–767.

5. Gupta M. D. and Gupta, A. S. (1979): Convective
instability of a layer of a ferromagnetic fluid rotating
about a vertical axis. Int.J. Engg Sci, 17(2), 271–277.

6. Gotoh K. and Yamada M. (1982): Thermal convection
in a horizontal layer of magnetic fluids. J. Phys. Soc.

Japan, 51, 3042-3048.
7. Stiles, P. J., and Kagan, M. (1990): Thermoconvective

instability of a horizontal layer of ferrofluid in a strong
vertical magnetic field. Journal of Magnetism and
Magnetic Materials, 85(1-3), 196-198.

8. Russell C. L., Blennerhassett P. J. and Stiles P. J. (1995):
Large wave number convection in magnetized
ferrofluids. JMMM, 149, 119-121.

9. Maruthamanikandan S (2003): Effect of radiation on
Rayleigh-Bénard convection in ferromagnetic fluids.
Int. J. Appl. Mech. Engg., 8, 449-459.

10. Mathew Soya and Maruthamanikandan S (2018):
Darcy-Brinkman ferroconvection with temperature
dependent viscosity. J. Phys.: Conf. Series, 1139,
012023.

11. Maruthamanikandan S, Nisha Mary Thomas and Soya
Mathew (2018): Thermorheological and
magnetorheological effects on Marangoni-
ferroconvection with internal heat generation. J. Phys.:
Conf. Series, 1139, 012024.

12. Darcy H. (1856): Les Fontaines Publiques de la Ville
de Dijon, Paris: Victor Dalmont.

13. Muskat M. (1937): The flow of fluids through porous
media. J. Appl. Phys., 8, 274-282.

14. Hubbert M.K. (1956): Darcy’s law and the field
equations of the flow of underground fluids. Trans.
AIME, 207, 222-239.

15. Whitaker S. (1966): The equations of motion in porous
media. Chem. Eng. Sci., 21, 291-300.

16. Venezian G (1969): Effect of modulation on the onset
of thermal convection. J. Fluid Mech., 35, 243-254.

17. Malashetty M S and Wadi S V (1999): Rayleigh-Bénard
convection subject to time dependent wall temperature
in a fluid-saturated porous layer. Fluid Dynamics
Research, 24, 293-308.

18. Mary Thomas Nisha and Maruthamanikandan S (2018):
Gravity modulation effect on ferromagnetic convection
in a Darcy-Brinkman layer of porous medium. J. Phys.:
Conf. Series, 1139, 012022.

19. Maruthamanikandan S, Nisha Mary Thomas and Soya
Mathew (2021): Bénard-Taylor ferroconvection with
time-dependent sinusoidal boundary temperatures. J.
Phys.: Conf. Series, 1850, 012061.


	Spacial 1

