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1.0 Introduction

Smith and co-workers have studied the evolution of grain
growth under second-phase particles over the years since the
initial work in 1948 [1]. The principles of microstructure
interpretation in terms of interaction between second phase
particles and moving grain boundaries due to limiting grain
sizes have been explained before. The pinning pressure
induced by the second phase particles would counteract the
driving pressure that exists owing to grain boundary
curvature [1]. Since this happens, it would be impossible for
normal grain growth to proceed. As a result, the grain size
would reach a maximum radius [1], given by

... (1)

Where R(lim) is the maximum grain radius under the
influence of second phase particles, r is the mean size of
second phase particles, and f is the area fraction of the second
phase particles. In developing the equation to approximate
the limiting grain size possible, Zener made certain
assumptions, which have led to proposals of altering the
equation.

... (2)

Where k represents the constant value, i.e.  and
m=1, equation 2 transforms to the Smith-Zener equation.
Investigation of the limiting grain size through the simulation
route began with pioneering work by Srolovitz et al. in 1984
[2]. The 2D grain growth kinetics was carried out using Monte
Carlo simulation. Exploration of the Zener limit through the
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simulation route has, since then, gathered enormous
attention. However, simulations continue being performed to
understand the limiting grain size, including this research
work. The various values for the pinned grain size proposed
by researchers over the years have been summarized in Table
1 in chronological order. The Smith-Zener equation for the
theoretical limit of the grain size is also given in the table to
compare with the simulation result. Srolovitz [2] carried out a
2D Monte Carlo simulation on a triangular lattice on a modest
matrix of size 150×150. The value obtained for the limiting
grain area A(lim), which is scaled inversely with the volume
fraction of the particles and can be approximated to the effect
that the limiting grain radius is inversely proportional to the
square root of the volume fraction. Doherty et al. [3] also
arrived at similar limiting grain size values while carrying out
a computer simulation of 2D microstructure but with a non-
random distribution of particles. The authors chose non-
random distribution since it was reasoned that random
distribution of particles led to a more than random interaction
of the particles with the grain boundaries in a simulated
atmosphere.

Hazzledine and Oldershaw [4] carried out a 2D simulation
and proposed a value R(lim) almost equal to its predecessor.
Hassold et al. [5] performed a similar study employing MC
simulations to study the influence of second phase particles
on a triangular lattice of 200×200. They gave a value for the
Zener limit, as shown in Table 1. Finally, Gao et al. [6]
investigated the effect of second phase particles on a 500×500
triangular matrix of size using 2D simulations. They gave the
Zener limit value as shown in Table 1. Mohseni introduced
the degree of contact between grain boundaries and second
phase particles to predict the grain size limit in the presence
of second phase particles. The degree of contact increased
during grain growth and reached a stable value when the
grain structure was pinned [16]. Although the initial location

of second Table 1: Zener limit modifications over the years
through 2D simulation

Second phase particles did not have a significant
contribution to the pinning of grain boundaries without
considering the measure for the degree of contact (R), Gao et
al. [6] obtained a limiting grain size use approximately
equivalent to that obtained by Harsold et al [5] as shown in
Table 1. Kad and Hazzledine [7] carried out 2D MC
simulations on 2000×2000 matrix size in a square and triangular
lattice under various shapes of second phase particles. They
hypothesized that the square root of ‘f’ scaled inversely with
the pinned grain size. Furthermore, they observed that the
stagnant grain shape did not depend strongly on the
precipitate shape, but the stagnant grain size had a weak
dependency.

Soucail et al. [8] carried out a 2D MC simulation on a
2000×2000 triangular lattice under surface fractions from
0.0001 up to 0.1. They introduced a new variable  into the
Zener equation. They proposed that the Zener limit scale is
inversely proportional to the square root of the product of 
and f (Table 1). However, the effect of  on the limiting grain
size has been discussed earlier by Srolovitz et al. [8], Doherty
et al. [3] and Huang et al. [9] carried out 2D Potts model
simulations on a 200×200 lattice. They observed that pinned
grains are found to obey a and  relationship fora
range of particles in the presence of randomly distributed
impurities with fractions varying from 0.0001 to 0.1.

2.0 Methodology

2.1 Monte Carlo simulation by Potts
model

Potts model, based upon the Metropolis algorithm and a
normal boundary condition, was used in the present study,
and the Monte Carlo simulation is a reputable method to
study grain growth [2], [11-12]. Therefore, I disregarded the
impact of lattice temperature and conducted the simulations
at a steadystate, i.e., T=0. Originally, the continuum
microstructure appears as a square matrix with arbitrary
integers ranging from 1 to Q, where Q indicates the
orientations of the grains. Next off, the number of dissimilar
neighbors is calculated by selecting an arbitrary matrix aspect
and contrasting it to its closest neighbors. Next, the
previously selected element, the once minor (?) is a larger
chosen element, is flipped. Finally, we tally up the number of
people who have unrelated neighbors. Suppose the unlike
neighbors of the flipped items (DE) are the same or different
from the original elements (DE). Flipped element replaces the
original matrix. That is until something better is found, the
initial element remains. When N and MCS are the matrix size

Table 1: Zener limit modifications over the years through 2D
simulation
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and measure of time, respectively, one Monte Carlo step is
formed. Second phase particles bring random static
components into the matrix that do not participate in grain
coalescence but prevent it from occurring.

2.2 Hardware and software

More than a hundred million iterations were required to
allow for grain growth and the evolution of microstructures
under different input variables by using a powerful computer.
As a result, a system with the following specifications was
explicitly created to run all simulations. A Dell OptiPlex 7070
Tower Desktop Computer was built for adaptability, flexibility,
and enhanced performance. It was driven by a 3.0 GHz Intel
Core i7-9700 Eight-Core CPU that can be increased to 4.7 GHz,
enabling it to run several programmes simultaneously.
Furthermore, the 64GB of 2666 MHz DDR4 RAM assists to
guarantee smooth multi-tasking and also permits the
computer system to access frequently-used data promptly.
Programmes, particularly for such an application, are purely a
function of CPU memory interaction speed. Therefore, this
combination was the fastest available in the market.

The present code, on which the results of this research
work are presented, is entirely on the Java platform. The code
generated is very efficient, highly parallel, and super-fast in
execution. For example, it takes about 1 minute for a
2000×2000 size matrix with a Q-state value of 64 to run 1,000
Monte Carlo steps, which means that 4×109 iterations of the
Metropolis algorithm would have been accomplished. Some
salient features of the code are (1) The code was written in
JAVA (JDK version SE 14.0.2) using freeware, Eclipse (4.16.0).
(2) The code was parallelized, permitting all 4 processors to
be used throughout the simulation. Achieved this by splitting
the array into four smaller sections and creating a thread to
process each section while ensuring that the size is divisible
by 4.3. used multiple threads in the code to carry out parallel
processing, utilizing all four cores effectively. The cores did
not present any artificial boundary conditions since no matrix
subsection was allotted to one core. Also, as we see from the
results later, the grains have grown quite generously across
all cores and have extended grain boundaries at various
angles. (4) Grain area estimations were additionally
parallelized, with the choice to create the needed documents
after a particular variety of runs. (5) coded the option to self-
terminate a simulation trial upon no change in the Hamiltonian
for a specific number of iterations for stagnation cases. saved
files by specifying the gap between the file hold in terms of
MCS.

The simulation, on the other hand, took almost two weeks
to complete. It required 280 hours of non-stop CPU usage
only to keep the 10000×10000 matrices static. Used the code
to keep track of the limiting grain size. It was also written to
automatically end the simulation when the Hamiltonian value

did not change for 1000MCS consistently, as determined by
the Metropolis method. Therefore, only computed the limiting
grain size once to avoid wasting CPU time at the simulation
conclusion. Consequently, the drop in Hamiltonian, which
directly indicates grain growth, was regarded as an indication
of grain growth stagnation. Therefore, the 2D simulation was
performed on irregularly sized impurity particles with a start
count of 10 MCS. Converting selected grains into impurities
and allowing them to spread randomly over the matrix until
the desired percentage of impurities is attained. Every
impurity is static. Furthermore, except for inert particles, the
simulation continues with the remaining grains and begins
initially; since the impurity sites are fixed, and their area is
preserved, they do not participate in the lattice reorientation
process. Another way, cannot to acquire impurities outside
of the impurity region. Impurity particles obstruct grain
movement locally when grain size decreases, making
unpinning difficult.

3.0 Results and Discussions

This research work found that Monte Carlo simulations of
smaller-sized matrices ( 500) have been the primary focus of
two excerpts: Kad et al. [7] and Soucail et al. [8], having dealt
with matrices 2000×2000. To prevent the influence of the
matrix size on the experiment outcome and ensure accurate
results, researchers should choose a pinned grain size of
R(lim) that is smaller than one-third of the matrix size [13].
When smaller matrices are used and run to stagnation with
low surface percentages of second phase particles, their grain
sizes increase. As a result, they are likely to have minimum
size restrictions violated.

After determining the best-sized matrix to use, the next
step was to examine the Zener limit carefully. Since sample
values for Q – State were constant a 64 and the percentage
of second phase particles (f) at 0.1, ran a wide range of matrix
sizes (varying from 100 to 10,000). The calculated parameters
were averaged across three attempts for all matrix sizes within
2000. In addition to the previously mentioned parameters,
R(max), k, and  were considered. The value Q is fixed to zero
for all second phase particles, distinguishing it from Q – State
values. The particle was defined as being within a grain of
particles of the same Q – State surrounding it. Otherwise, it
was meant to be located on the grain boundary. Fig.1(b)
shows that the largest grain size is around 3 times the Zener
limit at stagnation, as seen in Figure 1(a). it indicates normal
grain growth. But, more importantly, all the parameters
constrain behaviour at larger matrix sizes (N  2000). However,
the variations involving smaller matrix sizes seem to be normal.
This monitoring follows the results obtained by Kad et al. [7].
They recommend that the 500 minimum matrix size required
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for more reliable simulation results eliminates any disagreeable
results. However, it is better to decide on a larger matrix size
(N  2000) to bring out a Monte Carlo likeness of grain growth
in this particular research study. Figure 2(a) indicates the
scaling constant against the various matrix sizes, and the
calculated k value is 2, which is near the theoretical value.
Figure 2(b) indicates that second-phase particles lying on the
grain boundary increase with matrix size increases. which
concludes the normal grain growth behaviour under second

phase particles.
The Q-States 32, 64, and 128 are run to stagnate for

various surface fractions ranging from f=0.001 to 0.1 using
optimum matrix size N=2000. Figure 4 indicates that various
Q-States have only a minor influence on the grain size. The
inverse square root dependency correlation between the
R(lim) and ‘f’, is shown in Figure 3. The R(lim) contributes to
the power-law and a good interdependence with R2=0.9952.
The Zener limit equation can also be modified as follows:

Figure 1: Effect of (a) matrix size vs. R(lim) and (b) matrix size vs. R(max) under the influence of second phase particles

Figure 2: Effect of (a) matrix size vs k and (b) matrix size vs  under the influence of second phase particles
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...(3)
k is approximately unity, equation (3) rewritten as,

... (4)
The new Zener limit value was achieved, and it is close to

the value recommended by Srolovitz et al. [2], as shown in
Table 1. The key distinction is that Srolovitz employed a
triangular lattice in their study, while the present work used a
square lattice. Figure 4 depicts the relationship between the
limiting grain size and  under various surface fractions ‘f’
Figure 3 shows that the Zener limit varies inversely and
exponentially with . Thus, the Zener limit seems to vary as

 and it conflicts with the conclusions of Soucail et al. [8].
Stearns and Harmer [14], [15] revealed that the correlation

Figure 3: Zener limit vs f for different Q-States Figure 4: The Zener limit vs  for different Q-States.

between R(lim) and  is linear, which contradicts the
exponential correlations proposed above. According to
current findings,  increases exponentially as ‘f’ increases.
Higher ‘f’ values result in lower R (lim) values and a greater
grain boundary area; therefore, this is the case. Thus, 
increases even though R(lim) varies nonlinearly as an ‘f’
function.

Microstructures of pinned regimes are shown in Figure 5
(a–c) with essential information. The images show that the
average grain size reduces as the surface percentage of
second phase particles increases. In addition, because grain
boundary pinning is improved at higher values of ‘f’, the
number of Monte Carlo steps necessary to achieve
stagnation lowers as particle fraction increases. Figure 6
shows the frequency distributions of the normalized grains,

Figure 5: Pinned microstructures: (a) N=2000, Q=64, f=0.001, MCS (at stagnation)=5,86,076, (b) N=2000, Q=64, f=0.01, MCS (at
stagnation)=2,20,225 and (c) N=2000, Q=64, f=0.1, MCS (at stagnation)=59,589
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on a log scale, at stagnation, and the effect of various
second-phase particle fractions. Stagnated grain sizes are
much bigger in lower surface fractions of particles. In
contrast, they are much 9 smaller and thus greater in number
for higher particle fractions. Therefore, the grain distributions
show a higher frequency of grains for higher ‘f’ values. It is
very well established from the graph that simulated
microstructures show lognormal behaviour under the
influence of all particle fractions, thereby validating the
simulations carried out.

4.0 Conclusions

The followings are major conclusions from the current
research work, which involved large-scale Monte Carlo
simulations of grain growth under second-phase particles in
polycrystalline materials by a two-dimensional computational
method:
• It was found that the size of the matrix had a significant

impact on the grain size limit. The optimal matrix size,
N=2000, was determined after examining several growth
characteristics. Moreover, Monte Carlo simulations of
grain growth were recommended to use this method.

• The extensive 2D simulation was carried out under
various matrix sizes, Q-state and second phase particles
which resulted in a modified Smith Zener equation was
proposed as 

• A unique relationship was proposed between the Zener
limit and the fraction of particles lying on the grain
boundaries, i.e.,  It is based on 2D simulation
results.

Figure 6: Comparison of grain size distributions, at stagnation,
for various particle fractions when N=2000, Q=64.

• It was found that the two-phase materials had excellent
results in grain size distribution, uniformity, and visual
depiction of simulated microstructures.
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