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The virtual prototyping assembly of hydraulic support was
established using CAE technology. The investigation firstly
tested the location analysis, namely, dynamic analysis of
hydraulic support (ZY10500/20/36) for minerals is helpful
to obtain the angle changes between roof beams and cover
beam, and the movement test is concerned essentially with
the different location and kinematics and dynamic analysis.
In addition, this study investigated the model designed in
motion the project meets the safety, reliability and stability
claim through the motion curve. Especially, this work
carried out kinematics and dynamic analysis to achieved the
trajectory, velocity, acceleration curve, force and reaction
curves of the hydraulic support beam within the safe range
when load concentrated in the centre of the roof timber or
under the condition of serval various loads, including the
rated load axial loads and eccentric load , then found out
the maximum stress and figured out the most dangerous
place of the top beam under different loading ways,
including partial load force, intermediate concentrated
load, concentrated load at both ends. Additionally, this
work examined stress distribution and dangerous part in the
case of torsional loads. Consequently, this study ensured the
safety and reliability of the whole equipment, and optimized
the structure parameters to achieve coal mining
mechanization. Moreover, this study provided a new way of
thinking and theoretical reference to newly proposed
relevant technical standard.

Keywords: Hydraulic support, roof timber, reliability and
stability, optimation design.

1. Introduction

Hydraulic support is one of the key facilities in the
integrated mechanization technology of working face
[1]. Generally, roof timber of hydraulic support bears

huge pressure and strong airflow impact formed gangue
dropping from the goaf at work, so the design requirement of
hydraulic support is higher. Therefore powered support for
minerals must be optimized on the account of guarantee
perfect performance including strength and reliability.
Although, it is difficult to find the most optimal parameters
because many standards often depend on experience and
skills of the designer before 1950's, the optimization design
greatly was improved inconsequence of computer technology
[2-3], a bridge was built between mathematics and engineering
design. Thereby it was feasible to obtain the optimal design
parameters due to enormous computing power of the
computer, and the traditional design approach was also
fundamentally reformed [4-5]. Obviously, the optimization
method of combining mathematical theory and engineering
practice can solve many practical engineering problems [6-7].

Therefore, a large number of pioneers made many useful
exploration on optimization design in the field of mechanical
design [8-10]. Cooper and Charnes firstly applied the
stochastic programming methods to solve the parameters
optimization problem of engineering design [11-13], then this
method was widely used in security design structure. Hilton
and Feigen were a pioneer in reliable optimization design, and
put forward the reliable optimization design formula based on
the smallest weight [10, 14]. Barczak and Burton introduced
the concept of hydraulic support structural stiffness in
mechanical calculation and finite element strength of hydraulic
support [15], and established elastic model stents, furthermore
found the basis of mechanics calculations. Bensehamdi
analysed the stability of hydraulic support using plastic finite
element method [9, 16-17]. Hence, the design of hydraulic
support prototyping, including traditional prototyping,
testing, and design came into developmental period.
Accordingly, the designer combined analog design and
experience design in the two-dimensional plane, and avoided
the irrational product structure during the design phase, thus
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to devote more energy into more design work and abstain the
mechanism of interference phenomena.

However, research of hydraulic support roof timber
associated with reliability and optimal design method is also
less in recent year [18-20], especially, effective and reasonable
calculation and optimization has not been established. In
addition, there are still some outstanding issues, including
whole modeling and overall strength. For the hydraulic
support (ZY10500/20/36), this study had two aspects to be
addressed, the first question involved location analysis,
kinematics and dynamic analysis of roof timber, the second
problem deal with finite element method (Called FEM), which
ensured its safety and reliability, and optimized the structure
parameters to provides theoretical foundation for the design
of hydraulic support for minerals.

2. Methods and compuational details

This type of hydraulic Support is under the regulated
conditions of Chinese standard "General technical conditions
of MT312-2000 hydraulic support" [21]. Its maximum height
of ZY10500/20/36 support is 3600mm, and the minimum height
is 2000mm. This test height is 3070mm, and the force of the
top beam applied is 1.1 times the rated working pressure, and
the applied force is bigger than the rated load of 5250KN.

stress and dangerous parts of the roof timber in the cases of
partial load, intermediate concentrated load and concentrated
load.

3. Results and discussion

3.1 MOTION ANALYSIS OF ROOF TIMBER

The movement simulation is concerned essentially with
the location and kinematics and dynamic analysis of
hydraulic support, and thus to test model designed in motion
the project meets the safety, reliability, stability requirements
through analysis of the motion curve. Since the motion of the
hydraulic support pillar mainly by stretching to achieve, we
add to the kinematic analysis of four identical servo motors
on the column. With decreased speed of 100mm/s, the speed
of each servo motor is accordingly set in Fig.2a, and roof
timberis controlled in the range from 5500mm to 3500mm.

As showed in Fig.2b, the motion curve is lemniscate. The
trend shows two inflection points, and the maximum
fluctuation amount of support beam in endpoint level is less
than the allowable level requirements 30mm, and also shows
relatively flat. When we modified and re-sized institutional
analysis, it was found that the original crash siteins are no
longer colliding, and dynamic interference is solved. Which
meet the design requirements of the actual movementand and
job security of roof timber.

Fig.1 The geometric model (a-hydraulic support, b-roof timber,
c-FEM model)

With regard to the three-dimensional geometric model of
roof timber, as showed in Fig. 1a and b, it was modeled by
software Pro/Engineer, and some parts were simplified to
remove without affecting the structural strength of the holes,
rounds, chamfers and other auxiliary features, also remove the
flank guard parts. But the test must ensure that the basic
strength of the structural characteristics are not simplified, and
the main components remain the same size, as well as more
potential stress concentration details of the site is not
shortcutting. Additionally, the model is then imported
Mechanic to mesh in Figure 1c, further to definite material
parameters and constraints. Subsequently, this study carried
the analysis of motion and force by FEM under different
loading ways, the aim was to find out maximum torsional Fig.2 Motion analysis of roof timber (a-load definition, b-spot

position trajectory curve)
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3.2 STRESS AND DISPLACEMENT

This work investigated the deformation and forces of roof
beam under four different conditions. Namely mainly analyzed
displacement and stress contours, and then pointed out
design and optimization suggestions. Fig.3 shows stress
concentration. When load concentrated in the centre of the
roof timber, maximum stress is 120Mpa and occurs in the
loading position. Then both ends of the roof timber is
subjected to a concentrated load, we find reinforcement plates
to be withstand greater pressure. In this case, maximum stress
is 159Mpa and concentrated in a column fossa. Under

conditions of torsional load, stress mainly concentrated in the
top beam column fossa, and maximum stress is 264Mpa there.

Above three loading material is less than the allowable
stress 350Mpa, so roof timber is safe. However, the stress is
concentrated in the reinforcement plate, maximum stress
504.7Mpa beyond the allowable stress inconsequence of
partial load, roof beams will be destroyed. Moreover, torsional
load is relatively easy to form flaw, we should enhance the
strength of the column nest or improve structural design and
the use high strength materials.

According to Fig.4, displacements gradually increases
from the front of the roof timber to the connection of cover
beam. In the case of central concentrated load, maximum

Fig.3 Stress contours (a-central bearing, b-ends of roof beam,
c-unbalanced loading, d-torsion load)

Fig.4 Displacement contours  (a-central bearing, b-ends of roof
beam, c-unbalanced loading, d-torsion load)
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displacement is up to 14.76mm. If the load is subjected to both
ends of the roof timber, maximum displacements (6,729mm)
occurs at the front. Thereby It's worth noting that the
maximum displacement occurs at the front end of the top left
side of the torsion beams on the condition of torsional load,
and other locations are not significant deformation. As a
result, it is key to use the streng material to ensure the life
and safety of the roof beams, and to increase two
strengthening plates nest on top of the column. In order to
ensure the strength of the stent. Additionally, we should
improve the quality of welding in the connection
reinforcement plate roof to reduce stress concentration.

3.3 DYNAMIC OBSERVATION

3.3.1 Roof timber and shield beam

Dynamic analysis of hydraulic support is conductive to
observe the angle changes between roof beams and cover
beam. Therefore, the changed data are obtained within twenty
seconds, and then is graphed in Figue 5, which can be more
intuitive image of observing and analyzing the angle changes
of the top beam pitch angle, including roof beams and shield
beam.

Fig.5 demonstrates that the pitch angle range is within
two degrees during falling of hydraulic support. Although the
range is very small, consistent hydraulic support pitches
angle range. When the pitch angle range is too large, it may
affect the stability of exercise. In addition, Fig.6 shows the
angle changes in between the shield beam and the top beam
are in the range of thirty degrees. Consequently, angle
requirements must be less than sixty-two degrees at the
maximum height, and be greater than twenty-five degrees at
the lowest height. Thereby the angle change of hydraulic
support is clearly satisfied the condition.

3.3.2 Roof timber and columns

As the principal carrier member, the pillar plays an

important role in connecting with the roof beams and columns.
Some results certainly demonstrated that the connection force
between roof timber and columns must be much larger than
the force between the other components [22-24], and this
work also found the apparent difference. Therefore, we should
strictly compliance with the precision requirements for the pin
shaft between two parts. This study loaded three and
obtained stress distribution and displacement distribution of
hydraulic support column, as showed in Table 1.

This investigation examined the static analysis of the
column on the condition of serval various loads, including
the rated load axial loads and eccentric load. The results
indicates that the most easily damaged parts are mainly
concentrated in portions welded between the column and roof
beams, in connecting parts of the outer cylinder and the
cylinder, and also in the cylinder and the column. Especially,
the connecting pin hole must be focused in different load
conditions. As a result, the key site of roof timber should be

Fig.6 Angle changes between top beam and shield beam

Fig.5 Pitch angle changes of the top beam

TABLE 1: DISTRIBUTION OF MAXIMUM STRESS AND DISPLACEMENT

Loading Axial rated Axial Axial rated
load of full- eccentric of load of 2/3
stroke 1.5 full-stroke full-travel
times load 1.1 times 2 times

Maximum 745.1MPa 859.1MPa 794.7MPa
stress

Position of Near Near pinhole Near pinhole
maximum pinhole connected connected
stress connected outer cylinder roof timber

columns and the base and columns
and beams

Maximum 2.284mm 13.09mm 1.326mm
displacement

Position of Pinhole Pinhole Pinhole
maximum connected connected connected
displacement columns outer cylinder roof timber

and beams and the base and columns
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thicker than in the design process, namely welding parts
should be considered the higher strength steel, which is to
ensure the security and stability of hydraulic support for
minerals.

4. Conclusions

In summary, this work discussed the deformation and forces
of ZF10500/20/36 hydraulic support roof timber for minerals
under four different conditions, and put forward propose
solutions based on analysis of displacement and stress
distribution of the four kinds of conditions. In addition, this
study anticipated the hazardous area or location of roof beams
during working. The results found the most likely damage
parts or positions, including pin hole between the top beam
and cover portion, loading parts of the force and the column
nest in the bottom. Furthermore, this examine suggest
improvements on the design of roof timber, which will provide
a reference for the design optimization of hydraulic support.
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