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This paper reviews past and the prevailing maintenance
concepts practiced, evolved with industrial revolutions
over the centuries and briefly outlines the cognitive
process, methods and framework of tools and techniques
which will be used in the days to come. The maintenance
practices have continuously evolved in how the equipment
was earlier managed using breakdown, corrective,
preventive, total productive maintenance, condition-based
maintenance, failure analysis reporting, risk-based
maintenance and reliability centric maintenance. The core
objective of maintenance remained the same “Increase
useful life of an asset with minimal costs”. The thinking
now has changed from viewing maintenance as “costs” to
maintenance as “investments”. In the era of Industry 4.0,
the maintenance value chain - an integrated cyber-physical
system plays an important role in the maintenance of the
mining equipment. A cognitive/AI (Artificial Intelligence)
maintenance framework can be an effective tool in
optimizing the maintenance programme with minimal costs
when compared to the traditional maintenance programme
in the industry. The optimal replacement policy can be
calculated and determined by the computer to minimize the
expected downtime or maximize the expected profit. The
minimum expected downtime per unit time and maximum
expected profit per unit time can also be determined. This
replacement policy and mathematic models can be used as
reference to the failure system maintenance and
replacement.The evolution from traditional data-driven
algorithms to blended intelligent algorithms is helping in
developing new optimization models for maintenance
management systems.

Keywords: Equipment; industrial revolution;
breakdown; AI; industry 4.0; cognitive.

1.0. Introduction

Whatever is innovated today will be adopted as
standard practices tomorrow and has been
customized from generic industries to specific

industries. The mining industry is an asset-intensive
industry.The new technology and advancement in big data
mining and effectivereal-time calculations are helping new
tools to be developed and designed. The attempts to use AI
in maintenance is going on for years in developing models
and utilizing it, but the wholistic view is still missing [1]. The
integrated system architecture where all the systems are
coherently integrated is still missing from the enterprise
landscape. There are multiple silo systems due to which the
maintenance management system faces challenges to address
the integrated view of any maintenance activity.

In the past, the mining industry was mostly viewed as
labour-oriented with low levels of mechanization and
technological advancement. More than any other industrial
activity, mining tends to leave a strong negative impact on
the environment and society [2]. The situation has been
reviewed by experts and scientists and, in the present decade,
there has been a pronounced upgradation in the mining
industry, especially in opencast mining. More technologically
advanced, automated and capital-intensive heavy earth-
moving machinery (HEMM) are now available and deployed
to meet the high demand for minerals and the profitability of
mining ventures. The availability of HEMM and its
performance regarding productivity depends on the
maintenance quality and reliability characteristics of the
equipment[3]. The concept of absolute inherent reliability of
a piece of equipment or item is a myth, and there is no such
equipment or item which is completely reliable with respect
to the work environment, the system of work or work activity;
all are likely to fail[4]. Modern mining equipment is complex
in design and use a large number of components or items.
Evolution of maintenance practices since the industrial
revolution has shaped the maintenance practices from
breakdown, corrective, preventive, total productive
maintenance, condition based maintenance, failure analysis
reporting and reliability centric maintenance (RCM) [5].
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Traditional maintenance programmes are based on the
recommendations by manufacturers, on mine legislations and
follow some set standards which may not hold good or show
promising results in achieving higher availability of the
machines in today’s world of optimization [6][7]. Here the full
production relies upon the availability of equipment and it has
a cascading effect on the subsequent downstream processes
in the entire mining supply chain. If the entire life cycle of an
asset and its processes are considered, the primary focus will
have to be on maintaining the equipment to enhance the life
cycle effectively within the limit of constrained resources[8].
1.1 ASSET MANAGEMENT STRATEGY

Every mining company frames an “Asset Management
Policy”. For executing these policies, the company must
define enablers to perform and subsequently monitor these
activities (maintenance performance management), which
enables them to analyze results and take further decisions or
actions to improve the performance indicators [9][10]. Before
understanding the maintenance end to end life cycle, it is
imperative to discuss ten asset management principles briefly
as below:
• Maintenance policy and strategy – long term objectives

and vision
• Maintenance management – organization and people

management
• Data management/IT systems – data definition, CMMS,

COTS

• Tactics – formalization of proactive programs,i.e.
preventive, predictive

• Materials management – procurement and inventory of
assets, spares and services (including annual
maintenance services)

• Planning and scheduling of static and moving equipment
– predefined scope of work and plans

• Measurement of key performance indicators –
identification, definition and measurement of KPIs

• Reliability of equipment – RCM programme based on risk
and condition monitoring

• Autonomous maintenance – maintenance by operator
• Process re-engineering – continuous improvement in

process

These ten principles help the asset life cycle using a
CMMS (computerized maintenance management system)
integrated with COTS (commercial over the shelf) at a high
level is depicted in Fig.1.

In the mining industry, multiple processes have been
adopted to enhance the life cycle of an asset to ensure its
maximum up-time, but somewhere these actions have affected
the production, safety and reliability, duration etc. resulting
in a reduction of availability of the equipment [11]. The entire
maintenance process from acquisition of asset till the disposal
has many processes and many stakeholders. The balancing
act between production operations and maintenance still has

Fig.1 Asset end-to-end life cycle
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a long way to go. This paper aims to explain the maintenance
practices in mining in chronological order.
1.1 CURRENT PRACTICES IN MAINTENANCE

Maintenance departments generally do not synchronize
their activity with the operation teams in the industry.
Scheduled maintenance activity is seldom integrated with the
production [12]. For every piece of equipment, a different
preventive maintenance input is maintained that may increase
the complexity, which ultimately affects the production of the
mine. The current situation, where the maintenance team or
department has individual maintenance inputs for individual
equipment. Some of the preventive maintenance inputs come
from individual systems, and production schedules are often
neglected. Even after ERP (enterprise resource planning)
implementation by 90% of the mining companies have around
minimum 30-40 systems in the solution landscape which is not
integrated with each other[10]. Furthermore, each input from
these systems provides varying insights and objective is to
synchronize them. In mining parlance, the maintenance
schedule (time/performance) comes from system A
(maintenance system ERP, CMMS, MIS etc.), the tyre
replacement schedule comes from system B (tyre management
system), safety inspection and safety-related activity is
derived from system C (safety management system), RCM
(reliability centric maintenance) results come from system D
(RCM system) and so on and so forth. These insights should

have integrated coherent view which should be the deciding
factor for any maintenance activity [9].

Fig.2 demonstrates the evolution of maintenance practices
over the years from the first generation to the present fourth
generation. Initially, the starting concept was “fix when broke”
to now relying on the latest technological advancement using
IoT, AI, robotics automation which is helping the enterprises
in developing new methods and techniques to achieve their
organization objectives of increased availability and cost
reduction [13][14].

A lot of new technology over the last 100 years has been
applied in the mining industry. However, today seems
different where all the innovation potential is available across
the mining value chain. If we optimize the insights from
various systems, we will be able to increase the availability
and utilization as per the benchmarks in the next section [15].
1.2 MAINTENANCE BENCHMARKS

The maintenance is managed by resources, i.e. workshop
equipment, manpower, workshop bay, subcontractor, spares,
tools and SOPs. Each maintenance resource is being also
measured for their performance in a specific period.

When the maintenance metrics were being started to be
measured, the KPI’s definition was being brought into play,
mostly driven for the manufacturing industry and airlines
industry. Initially, the benchmarks were too generic only

Fig.2 Maintenance practices over generations
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defined for maintenance jobs, but slowly it was defined for
specific industries due to multiple operating constraints.

Table 1 shows the industry benchmarks for tracking and
trending maintenance metrics [16].

However, the availability benchmark varies from industry
to industry as shown in Table 2 and the objective of each
industry is to increase the availability for increased utilization
[17].

A typical maintenance job can be split into actual working
time, break time, punching time, arranging for tools and parts,
standard operating process collection, travel time to work site,
idle time. These times wasted for non-productive activities
has been decreased by around 20-30% by introduction of

maintenance systems and is in the path of continuous
improvement in the coming years.

The reduction in time spent on non-productive work or
indirect work for the maintenance of equipment will help
increase the equipment availability. So, if the focus is to
optimize the above-mentioned non-productive times as
indicate in Fig.3 effectively, then it will help in increasing the
“equipment availability” and all other metrics as mentioned
in Table 1.
1.3 EVOLUTION OF MAINTENANCE PRACTICES

The maintenance concept had changed a lot from “Fix
when broke” to “Resolve to Maintain”. In the year 1980s
traditional preventive maintenance (PM) programmes were

TABLE 1: METRICS AND BENCHMARKS

Metric Variables and Equation Benchmark %

Equipment availability >95

Schedule compliance >90

Emergency maintenance percentage <10

Maintenance overtime percentage <5

Preventive maintenance completion percentage >90

Preventive maintenance budget/cost 15-18

Predictive maintenance budget/cost 10-12

Hours each unit is available to run at capacity
Total Hours during the reporting time period)

Total hours worked on schedule jobs
Total hours scheduled

Total hours worked on emergency jobs
Total hours worked

Total maintenance overtime during period
Total regular maintenance hour during period

Prevnetive maintenance actions completed
Preventive maintenance actions scheduled

Prevnetive maintenance cost
Total mainteance cost

Predictive mainteannce cost
Total maintenance cost

% =

% =

% =

% =

% =

% =

% =

Fig.3 Time spent by a maintenance employee in a shift

being challenged for giving a planned
shutdown even if not required. The
computerized interval-based
maintenance which was proposed by
specifying probabilities of failures,
continued advances in the 1990s
began to change maintenance
practices yet again [18][19]. The
development of technology and
increased computer usage by the
workforce made it possible to innovate
on interval-based maintenance
techniques. The emergence of
condition monitoring (CM) or
condition-based maintenance helped
support the findings of F. Stanley
Nowlan, Howard F. Heap and others.
Nowlan and Heap gave the concept of
RCM programmes for the airline
industry which slowly took place in
navy and then to other industries [20].
Now maintaining the equipment
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changed to maintain and retain the equipment functions. Next
Toyota introduced TPM (total productive maintenance).
Overall equipment effectiveness (OEE) was the main objective
of TPM. TPM creates a collaborative environment between
operators and equipment to create ownership [21][22].

Fig.4 describes the evolution of maintenance practices
over the years in the industry. It is gone through all the
nuances of predictive, prescriptive and now innovating using
AI (artificial intelligence) the industry. These innovations over
the years have improved in the reliability and sustainability
of the equipment and increase in the OEA (Overall Equipment
Availability).

2.0 Artificial intelligence environment
The OEM (original equipment manufacturer) recommends that
the schedules can be time or performance-based whichever
is earlier, with specific schedules provided for spare part
replacement. Inputs are also received from RCM (reliability
centric maintenance) for generation of schedules. The
preventive maintenance schedules generated in this fashion
are isolated and do not include the influence of other factors
which results in greater production downtime.

AI is a branch of computer science which can help

develop programmes to allow equipment to perform functions
normally requiring human intelligence [23]. The objective of
AI is to “think” to a certain extent under special conditions.
Artificial computing is a self-learning system that uses data
mining, pattern recognition, structured and unstructured data
and natural language processing to mimic the way the human
brain works [24][25]. The goal of the cognitive model is to
help create automated information technology (IT) systems
which learn continuously and can solve problems without
requiring human assistance. These models can help resolve
the complexity of analyzing big data and provide a decision
framework for analysis and automated decision making.These
systems use machine learning algorithms which refine the way
patterns are analyzed as well as the way data is processed so
that the systems develop the capability to anticipate future
problems and propose probable solutions.

There are many ways the AI is being utilized for real-time
decision making, some of them are as follows [26]. KBS
(knowledge-based systems) uses the heuristics to determine
a suitable action. CBR (case-based reasoning) utilizes past
experiences to solve present day problems. It provides
machine learning by updating the case base. Genetic
algorithms (GA) solutions can evolve through mutation.
Neural networks (NN) use back propagation algorithm to
emulate the behaviour of the human brain. The solution
comprising partly or fully of the concepts mentioned above
coupled with IoT (internet of things) is the future of
maintenance [27][28].

3.0 Artificial intelligent system and analytics in the
mining industry

The development of IT-enabled systems is imperative in the
world of automation, so including in the mining industry, for

TABLE 2: EQUIPMENT AVAILABILITY NORMS OF VARIOUS INDUSTRIES

Industry segment Availability Availability
minimum % maximum %

Discrete manufacturing 78 91
Batch process 72 90
Process industry 85 95
Power 85 95
Paper 83 94
Mining 60 82

Fig.4 Evolution of maintenance practices over the years
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higher production and safety [29]. The global mining industry
is moving towards following the best practice of the
manufacturing industry. Learning and adapting from the
manufacturing industry is transitioning to the 4th generation
industrial revolution or IoT 4.0[30]. Fig.5 presents the
application of analytics in the mining process and how it can
help in integration various sub systems for better
optimization.

Fig.5 depicts the various mining value chain integration
component systems which help in deriving the analytical
model. The data is extracted using the appropriate APIs
(application programming interfaces) and based on the AI
algorithm, a machine learning model is proposed. Since the
1980s, several artificial intelligence applications have been
developed in various industries of engineering and
management [31]. The concept in Alan Turingís 1950 article
“Computing machinery and intelligence”, AI is now getting
implemented in every supply value chain starting from
product development to end use [32].

The power of machine learning is to detect anomalies in
predictive maintenance. The capacity of deep learning’s is to
analyze very large amounts of multi attributable data that re-
sequence existing preventive maintenance systems for
optimization. Additional data, such as audio, video and image,
from sensors, neural networks can enhance and replace
traditional methods. AI’s prediction ability to and planned
interventions can help reduce downtime and operating costs
while improving production yield. For example, AI can extend
the life of a mining equipment which was not possible earlier

using traditional analytic techniques by combining IoT sensor
insights, historical maintenance data and optimization model
data which is generated for an equipment.

4.0 AI model

The general preventive maintenance concept is as per the
OEM (original equipment manufacturer) standard operating
procedures on time or performance or component replacement
date which is linear on a time scale.The preventive
maintenance dates will not be exact time based or performance
based, but each schedule will have dynamic dates considering
every attribute as per the weight [33]. The weight can be
variable as per the asset class/equipment type, and the
operating region as the same equipment operating in a dusty
region or steep gradient requires more frequent maintenance.
Another important aspect to be considered during the
preventive maintenance is part replacement with a repaired
part [34]. The reliability of a repaired part is not the same as
that of a new one [35]. This will negatively influence the
overall reliability of the equipment owing to the negative
weight attributed to the repaired part [36]. This AI model will
predict failures and recommend maintenance as supervised
machine learning problems [37]. The historical data will serve
as the testing and training the samples. These AI model will
be fed with real-time insights using the IoT sensors.

An AI model framework acts as an advisor by connecting
to the equipment for real time insights, preempt issues by
discovering non-obvious patterns, aid during repairs and
finally apply reasoning and learning for continuous

Fig.5 Maintenance value chain and COTS (commercial over the shelf) integration - mining industry



422 SEPTEMBER 2019

improvement. Data-driven insights usually employ pattern
recognition and machine learning techniques to detect
changes in the states of the equipment performance and
physical attributes. These patterns help in providing the
decision-making insights.

An AI model for asset maintenance planning should
consider asset operation requirements, asset condition and
maintenance requirements, weather forecast, spare parts
availability as well as other repair shop constraints to produce
a joint operations/service plan which maximize asset up-time
and minimize maintenance costs. Such a model would work
with the below objectives: 
1. Minimizethe time the asset is down for service turn

around time – MTTP (mean time to perform) [38]
2. Minimize the number of outages 
3. Minimize waste of spare parts useful life 
4. Balance workload across outages 
5. Improve visibility for production planning [39], resource

planning and service parts planning by providing
maintenance, resource demand and service parts
forecast[40].

6. Improve collaboration between asset operators, repair
shops and spare parts suppliers. The availability of
resources, for example, manpower, spares, workshops,
subcontracted or subcontractor availability [41].

5.0 Conclusion
This study presents an overview of AI applications in
planning and modelling in maintenance.

The AI coupled with “Internet of Things” insights has
evolved as a new area of innovation in mining for

maintenance as well as productivity improvement by real-time
feed by sensors through multiple wifi (wireless fidelity), GPRS
(general packet radio services) and GPS (global positioning
system) communication channels. The real-time decision
making using these insights with the help of mobility devices
help achieve increase the overall equipment effectiveness
(OEE) of the mining equipment. The AI uses languages, texts,
audio, visuals and structured data (historical, non-historical)
as inputs for decision-making framework. There is huge data
structured and unstructured data generated in the mines
which is now lying idle in the database. As of now only 20%
of the data is analyzed, the scope for improvement in data
analysis using AI tools will help increase the performance of
an equipment. These new system of innovation helps drive
and generate outcome-based decision making.

Cognitive models help move beyond the constraints of
programmable computing. It helps unlock the world of global,
unstructured data and to move from decision tree-driven,
deterministic applications to probabilistic systems that co-
evolve with continuous learning over the time. The
development of cognitive schedules and preempting the
resource requirements will help increase the equipment
availability and increase the productivity at the mine
operations. It improves planning and the adaption of
resources, which can be further utilized for innovation in the
mines.

The OEM (original equipment manufacturer) or the mine
owner can utilize the data generated by the user as per the
feedback and support required from time to time and help
reduce the SLA’s (service level agreement) during the AMC
(Annual maintenance contract) and equipment user can utilize
their historian and online help from the OEM for maintenance.

Fig.6 AI model framework for maintenance schedules
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Further increased usage of IoT (Internet of things) in the
mining industry will bring in new avenues of AI insights and
effective decision making.
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