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The ore grade estimation requires accurate prediction of the
grade at location from limited borehole information. It plays
the dominant role in the decision-making process for
investment and development of various mining projects and
hence become an important and crucial stage.This paper
evaluates the application of multi-layer perceptron neural
network (MLP NN) architecture to improve the
predictability in grade estimation from west coast limestone
deposit, Chandrapur district, Maharashtra. The spatial
variability of lithological information is incorporated as
secondary information in the model for grade estimation. In
this investigation the three dimensional spatial coordinates
along with four underlying lithological units are taken as
input variables and, the four grade attribute of limestone
deposit such as CaO, Al2O3, Fe2O3, and SiO2  are taken as
the output variable. The comparative analysis of these
models have been carried out and the results obtained, are
validated with geostatistical method ordinary Kriging (OK).
The observed value of various performance criteria viz.
regression coefficient and mean square error revealed that
the MLP NN performed well as compared to OK in terms of
generalization and predictability of ore grades.

Keywords: Grade estimation, multi-layer perceptron
neural network (MLP NN), ordinary Kriging (OK), spatial
uncertainty.

1. Introduction

Accurate ore grade estimation is vital to sustainable
mine economics. It plays a significant role in the
decision-making process for the investment in

mining, pit designing, production scheduling, and grade
control (David, 1977; Wu and Zhou, 1993; Mahmoudabadi et
al., 2009; Tahmasebi and Hezarkhani, 2010-2012). Typically, the
mineral grade are assessed from limited borehole information
(Li et al., 2013; Goswami et al., 2017). The various neural
network (NN) architectures such as multi-layer perceptron

neural network (MLP NN), radial basis function (RBF) and
general regression neural network (GRNN), hybrid ensemble
and optimized network are widely employed to improve the
predictability of grade estimation of various ore deposits
(Koike et a., 2002; Kapageridis, 2005; Chatterjee et al., 2006-
2010; Dutta et al., 2010; Samanta and Bandopadhyay, 2009;
Samanta, 2010; Hyun and Saro, 2010). These models vary for
uncertainty assessment of the geological and geophysical
variables realistically. The detail on several approaches for
grade estimation is discussed elsewhere (Goswami et al.,
2017). This paper discuss the application of MLP NN for
improvement in ore grade estimation for limestone deposit in
Chandrapur region, Maharashtra, India. A comparative
evolution of the MLP NN against OK has been investigated.

2. Geological Location
The investigation considered borehole log data that belong
to a major limestone ore belt of Chardrapur district,
Maharashtra. The area is situated between 19.7775°N and
79.3663°E. The exploratory borehole data represent the
lithology, geology, assay and surveying of 60 boreholes logs
of varying depths from 6 to 160m, with an average depth of
68 m. The boreholes are drilled at regular intervals of about
80 m in a grid pattern. The borehole data comprises three
spatial coordinates: easting (X), northing (Y) and depth (Z)
along with assay values of CaO, Al2O3, Fe2O3, and SiO2 and
lithological information. The assay value for each borehole is
collected at interval of 1 m depth. A total of 1686 samples are
collected at each depth interval. The geological map of the
study area is presented in Fig.1.

3. Statistical analysis of the data
The detailed statistical analysis of the exploratory borehole
data is carried out, before performing the grade estimation
(Table 1). CaO and SiO2 are major constituents in the ore
material. The histogram plots of CaO, Al2O3, Fe2O3, and SiO2
are presented in the Fig.2. The frequency distribution of
various ore constituents Al2O3, Fe2O3 and SiO2 are right-
skewed whereas CaO is left-skewed distribution (Fig.2). The
nonlinear complex relation between grade and their underlying
lithologies causes skewed nature in the spatial distribution
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of ore constituents of limestone deposit. The histogram plots
of the individual variables along with bivariate scatter plots
of the variables are presented in Fig.2. It is observed that all
of the variables deviate from the normal distribution.

4. Ordinary kriging for grade estimation
Ordinary kriging (OK) by geostatistical software SgeMs is
used for grade estimation of several attributes of limestone
deposit. Spherical variogram model is fitted over
experimental variogram to capture the spatial variability of
the several constituents of limestone deposit. Directional
variogram modelling is carried out to study the anisotropic
behaviour of various constituents of limestone deposit. It is
found that majority of the total 30 variograms had same
range and sill that exhibits anisotropic behaviour of the
deposit. Therefore, the spatial continuity of the grade
attributes of limestone deposit is analyzed using
omnidirectional variogram (Fig.3). The typical variogram (γ)
is represented as,

Where N is the number of samples, Z(x) and Z(x+h) represent
the assay value of several constituents of limestone deposit
at location x, (x+h) respectively.

TABLE 1: DESCRIPTIVE STATISTICS OF SEVERAL ATTRIBUTES OF LIMESTONE

DEPOSIT

Statistics CaO Al2O3 Fe2O3 SiO2

Minimum 12.0700 0.0300 0.0900 1.0100
Maximum 54.4200 17.3100 12.9900 45.0800
Mean 41.8814 3.2568 1.9734 14.5103
Standard deviation 8.8492 3.4095 1.7010 9.3023
Variance 78.3081 11.6247 2.8934 86.5326
Skewness -1.1827 1.6574 2.6816 1.1941
Kurtosis 3.4425 5.1135 12.7666 3.4220

Fig.1 Geological map of the study area for limestone deposit

(a)

(b)

(c)

(d)

Fig.2 Histogram plot of limestone constituents (a) CaO, (b) Al2O3,
(c) Fe2O3, and (d) SiO2

5. Multi-layer perceptron neural network for
ore grade estimation

The ore grade estimation for limestone deposit using MLP NN
architecture has three layers: input layer, hidden layer and
output layer. The network composed of three spatial
coordinates (X, Y, and Z), and four lithological units as input
variables and the four limestone constituents as for CaO,
Al2O3, Fe2O3, and SiO2 grade as the output variable. The
MLP NN network architecture for grade estimation of
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limestone deposit is presented in Fig.4.
The entire data is normalized in the range [0, 1] to ensure

that all the input and output variables lie in the same specified
range. All the input and output variables are transformed
using Eq.1
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Where Ni indicates the normalized value of xid, Rid is the
observed value of the ith sample of dth feature variable. Rd, min
is minimimum and Rd, max is maximum observed value of dth

feature space respectively. Then entire data set is divided into
training and testing data set. The MLP NN captures the
nonlinear characteristics of deposit with training data set
whereas its performance is validated with test data set. Cross

(a) (b)

(c)
Fig.3 Omnidirectional plot for (a) CaO, (b) Al2O3, (c) Fe2O3, (d) SiO2

(d)

validation to measure the model
performance is an accepted practice
from limited borehole data leads to
over fitting with actual data analysis
(Dutta et al., 2006; Samanta and
Bandopadhyay 2009). In this analysis,
60% (1013) of the data from each
lithological unit are randomly
considered as training data set and
rest (671) are used as testing data set.
This approach conforming to similar
exercise reported elsewhere
(Chatterjee et al., 2006).

The Levenberg-Marquardt (LM)
back propagation learning algorithm
is used for training the network
because of its robustness and
capability to perform nonlinear
regression (Chatterjee et al., 2006).
The details on MLP NN architecture
is discussed elsewhere (Haykins,
1999). Various learning parameters are
selected iteratively to get the
optimized network. The number of
neurons in hidden layers varied from

TABLE 2: STATISTICAL DESCRIPTION OF TRAINING AND TESTING DATA SET FOR GRNN AND SVR

Attributes Mean Standard Deviation

Entire Training Testing Entire Training Testing

No. of samples 1686 1013 671 1686 1013 671
X 365494.98 365487.93 365504.24 366.1962 362.3889 371.587
Y 2234930.44 2234938.39 2234920.14 396.4613 385.5935 411.682
Z 289.795 290.49 288.86 23.2712 23.3808 23.0197
CaO 41.8814 41.8510 42.0007 8.8492 8.8863 8.7043
Al2O3 3.2568 3.2495 3.2323 3.4095 3.4335 3.3156
Fe2O3 1.9734 1.9727 1.9494 1.7010 1.7232 1.6011
SiO2 14.5103 14.4809 14.4812 9.3023 9.2789 9.2577

Fig.4 MLP NN architecture for limestone deposit
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TABLE 3: ERROR STATISTICS FOR LIMESTONE ATTRIBUTES ON TEST DATA USING OK AND MLP NN

Error statistics ME MAE MSE RMSE R R2

CaO OK -0.0895 2.6491 24.4418 4.9439 0.8541 0.7295
MLPNN -0.0172 2.1083 24.1015 4.9093 0.8721 0.7605

Al2O3 OK 0.0752 0.9283 3.2747 1.8096 0.8800 0.7744
MLPNN 0.0119 0.7049 3.7537 1.9374 0.8722 0.7607

Fe2O3 OK -0.0009 0.6973 1.5587 1.2485 0.7447 0.5546
MLPNN -0.0232 0.3567 1.4662 1.2108 0.7855 0.6170

SiO2 OK 0.1092 2.6112 24.7938 4.9793 0.8696 0.7562
MLPNN 0.0360 2.1372 23.9653 4.8954 0.8871 0.7869

Fig.6 Regression plot for Al2O3 using
(a) OK and (b) MLP NN

(a)

(b)

(a)

(b)

Fig.5 Regression plot for CaO using
(a) OK and (b) MLP NN



784 OCTOBER 2018

(a)

(b)

(a)

(b)

Fig.7 Regression plot for Fe2O3 using (a) OK and (b) MLP NN Fig.8 Regression plot for SiO2 using (a) OK and (b) MLP NN

one to twenty. The pure linear, logarithmic sigmoid, and
hyperbolic tangent sigmoid are used as transfer functions in
the hidden layer and output layer. The activation functions
used in hidden layer and output layer are chosen among pure
linear, logarithmic sigmoid, and hyperbolic tangent sigmoid
iteratively. It is observed that fifteen neurons in the hidden
layer are sufficient to capture the complex interaction among
input and output variables. However, logarithmic sigmoid
transfer function and symmetric sigmoid transfer function are
found suitable in the hidden layer and output layer respectively
for the optimized network. Then model’s performance is

evaluated with test data set. The error statistics on test dataset
of MLP NN is presented in the Table 3.

6. Results and Discussion
In this paper, MLP NN is used for improvement in grade
estimation of limestone deposit. The performance of MLP NN
is compared and validated by the results obtained by OK
approach.The ordinary kriging considers only the spatial
coordinates for grade estimation, whereas in MLP NN rock
types are incorporated as auxiliary information into model for
the estimation. The MLP NN considered seven input
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variables including three-dimensional spatial coordinates (X,
Y, and Z), and four lithological units, whereas grade of four
limestone constituents are taken as output variable.

The comparative analysis of distinct estimation
techniques are carried out to determine the best estimation
for the deposit. The models are evaluated on the basis of their
predicted grades with test data set. The mean error (ME),
mean absolute error (MAE), mean squared error (MSE), root
mean square error (RMSE), correlation coefficient R, and
coefficient of determination R2 are used as performance
measures for all three estimators. SE, MAE, MSE and RMSE
signify the accuracy and precision of the model. The best
network topology is selected in accordance with the highest
correlation coefficient and the lowest mean square error
(MSE) (Samanta, 2010; Goswami et al., 2017). Table 3
represents error statistics of the models on test data. The
MLP NN and OK underestimated CaO and Fe2O3 whereas it
overestimated Al2O3 and SiO2. Both the models exhibit
comparable values of RMSE for each attributes of the
limestone deposit. The R and R2 values indicate that MLP NN
performed better as compared to that by OK for CaO, Fe2O3
and SiO2. Both models exhibit nearly same values for Al2O3.
These observations is reflected in the scatter plot of
predicted grades against actual values for various limestone
constituents Figs. 5-8. Fig. 9 represents the pictorial form of
comparison between OK and MLP NN on the basis of ME,
MAE, RMSE and R values for all grade attributes.

7. Conclusion
The applicability of MLP NN model for grade estimation of
limestone deposit from limited borehole data is evaluated. A
total 1686 borehole samples with spatial coordinates along
with their lithological units (input) and assay values of
limestone constituents (output) are considered. The F-test
exhibit statistical similarity between the training and testing
data set at 5% level of significance. The RMSE values for
CaO, Al2O3, Fe2O3 and SiO2 by MLP NN are 4.9093, 1.9374,
1.2108 and 4.8954 respectively, whereas corresponding values
by OK are 4.9439, 1.8096, 1.2485 and 4.9793. The correlation
coefficients for these attributes by MLP NN 0.8721, 0.8722,
0.7855, and 0.8696 for CaO, Al2O3, Fe2O3 and SiO2. Similarly

Fig.9 Comparison of ME, MAE, RMSE, R among OK, and
MLP NN

the R values for CaO, Al2O3, Fe2O3 and SiO2 by OK 0.8541,
0.8800, 0.7447 and 0.8696 respectively. The RMSE values
exhibit higher accuracy in estimation of limestone grade
attributes in majority of elements with the inclusion of
lithology as compared to that by OK.
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