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Ramachandramurthy and Aruna [8] studied the
Rayleigh-Benard-Taylor instabilities considering
variable heat source.

The instabilities of the Marangoni convection have
been investigated in many previous works. The
Rayleigh-Ritz approach was used by Rudraiah and
Siddheshwar [3] to compare the effects of six non-
linear temperature gradients with suspended particles
on the onset of Marangoni convection. Shivakaumara
et al. [9] examined the influence of several fundamental
temperature gradients by considering ferrofluids on
the onset of Rayleigh-Benard-Marangoni convection. A
stability analysis of various basic temperature
distributions, with free-slip boundary condition, on
the onset of Marangoni convection has been studied by
Siti Suzilliana Putri Mohamed Isa et al. [11].
Shivakumara et al. [10] investigated the effects of
various non-uniform temperature profiles on
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Abstract:
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1. Introduction

Marangoni convection, the surface tension driven
convection has attracted the interest of many
researchers. It has applications in the fields of welding,
drying silicon wafers, spreading of thin films,
nucleation vapor bubbles, material science, aerospace,
solid matrix heat exchangers, growth of crystals,
manufacturing of semiconductor device, various
extractions, and so on. Maragoni convection was first
theoretically analyzed by Pearson [5]. Shah and
Andras Szeri [8] studied Marangoni instability for
non-linear temperature profiles with of non-uniform
heat source. Riahi [7] investigated the stability of
linear and nonlinear steady convection with a non-
uniform internal heat source. Mokthar et al. [2]
theoretically analyzed the Marangoni instabilities in
case of heat generation in a composite layer.
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Marangoni convection with the solid plate at the lower surface. Kuznetsov and Nield [1, 4] investigated the onset
of natural convection varying the source strength varies by using linear instabilities in a fluid layer and a porous
matrix. Recently, Vanishree et al. [16] have studied the effects of linear and non linear temperature gradients on
Benard-Marangoni convection with constant heat source in a composite layer. Sumithra et al. [12, 13, 14, 15]
have studied the linear stability analysis of Marangoni convection in a composite layer with constant/
temperature dependent heat sink or source for the Darcy and Darcy-Brinkman cases.

The effects of linear, parabolic, and inverted parabolic temperature profiles on the onset of Marangoni
convection in a composite system with temperature-dependent heat sources in both the fluid and porous layers
are investigated in the current study. The effects of the internal Rayleigh numbers, the ratio of diffusivity, the
Darcy number and the horizontal wave number on the onset of DBM convection are illustrated graphically.

2. Mathematical demonstration

Consider an infinite incompressible horizontal fluid layer of depth ‘d‘ overlying a porous layer of depth ‘dm‘ that
contains heat sources Qr1 and Qm respectively. We take a Cartesian coordinate system with the origin at the
contact of the fluid and the porous layers, z-axis directed vertically upwards. The fluid layer is bounded by the
region 0  z  d  and the porous layer is bounded by the region – d m z m 0 . The lower surface of the porous
medium is rigid, while the top surface of the fluid layer is free, with surface tension gradients. The heat flux at
both boundaries is assumed to be constant.

The basic governing equations are (refer [14]):
... (1)

... (2)

... (3)

... (4)

... (5)

... (6)

where r1 = (ur1 , vr1 , wr1) represents velocity vector for the fluid layer and m = (um, vm, wm) represents velocity
vector for the porous medium,  is the porosity, o represents fluid density,  represents fluid viscosity, Pr1 is the

pressure, K - the permeability of the porous medium,  - the thermal diffusivity of the fluid,  represents

ratio of heat capacities, cp - the specific heat, t - the time, T denotes temperature in the fluid layer, Tm denotes
temperature porous layer. Here the suffix ‘m‘ denotes the quantities in the porous layer, ‘r1’ denotes the quantities
in the fluid layer. The fundamental steady state is assumed to be quiescent, and the solution is as follows:

... (7)

... (8)
The subscript ‘b‘ refers to the basic state.
The basic state temperatures Tb(z) and Tmb(zm) are (refer [14]):

... (9)
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... (10)

is the interface temperature, f(z) and fm(zm) are the dimensionless temperature profiles in the fluid and the porous
medium respectively.

Following Sumithra et al.[14], the basic solution is perturbed, linearized, non-dimensionalized by taking
suitable scale lengths in both the layers. After subject to normal mode analysis, differential equations so obtained
are (refer [14]):

... (11)

... (12)

... (13)

... (14)

where  represents the Darcy number,  and  respectively are the fluid and

porous internal Rayleigh numbers,   and  are the Prandtl numbers in the fluid and the

porous layers respectively, a and am are the wave numbers in the fluid and porous layers, Wm and W are the
vertical components of the velocity vectors in the porous and fluid layers. Considering the steady state convection,
i.e., n = nm = 0, the equations (11) to (14) reduces to

... (15)

... (16)

... (17)

... (18)
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3. Boundary conditions

The associated boundary conditions are non-dimensionalized and subjected to normal mode analysis. (Refer
Sumithra et al. [14]):

... (19)

... (20)

... (21)

... (22)

... (23)

... (24)

... (25)

... (26)

... (27)

... (28)

Here  represents the thermal Marangoni number,  represents surface tension and Tu is

the temperature at the upper layer of the fluid,  is the depth ratio and  represents the ratio of

thermal diffusivities.

4. Method of solution

The equations (15) and (16) are independent of temperatures (z) and m(zm). We use boundary conditions (19),
(22), (23), (26), (27) to obtain W(z) and Wm(zm) .

... (29)

... (30)

Equations (17) and (18), along with the boundary conditions (19–28), form an eigen value problem with the
Marangoni number as an eigen value. The current study aims to comprehend the stability of the composite
system using various basic temperature profiles, such as f(z) = fm(zm) = 1 for the linear, f(z) = 2z, fm(zm) = 2zm for the
parabolic, and f(z) = (2 - 2z), fm(zm) = (2 - 2zm) for the inverted parabolic profile.

4.1. Linear temperature profile
Considering the linear case [refer 14], i.e.,

f(z) = fm(zm) = 1 ... (31)
By substituting (31) in equations (17) and (18), and solving for (z) and m(zm) temperature boundary

conditions (21), (24), (25) and (28), we get,
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... (32)

... (33)

For the linear profile, the TMN, ML is,

... (34)
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4.2 Parabolic temperature profile
The equations for this case is,

... (35)
By substituting (35) in equations (17) and (18), and solving for (z) and m(zm) using the temperature boundary
conditions (21), (24), (25) and (28), we get,

... (36)

... (37)
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The corresponding TMN, MPB is as follows:

... (38)

4.3 Inverted parabolic temperature profile
The functions for this case are as follows:

... (39)

By substituting (39) in equations (17) and (18), and solving for (z) and m(zm) using the thermal boundary
conditions (21), (24), (25) and (28), we get,

... (40)

... (41)
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The corresponding TMN, MIP is

... (42)

5. Result and discussion

The effects of linear, parabolic and inverted parabolic temperature profiles on DBM convection in a single
component composite system with variable heat sources are investigated. The thermal Marangoni number (TMN)
is obtained for lower rigid and upper free horizontally bounded surfaces with thermally adiabatic conditions by

Figure 1: Effects of RI Figure 2: Effects of R
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using exact method. Corresponding TMNs, ML (linear),
MPB (parabolic) and MIP (inverted parabolic) against
depth ratio  for some fixed parameters are shown
graphically. When comparing the temperature profiles,
the observation shows that the linear profile has a
higher TMN, indicating that it is the most stable
profile, the most unstable profile is the inverted
parabolic profile, as shown in Figures 1, 2, 3, and 4
with MIP < MPB < ML for lower values of the depth
ratios, that is, for the porous layer dominant (PLD)
composite system and MPB < ML < MIP for higher values
of the depth ratios.

The effect of RI = 0.43, 0.47, 0.5 in the fluid layer, on
DBM convection, for a set of fixed physical parameters
RIm = T = 0.5, a = 1, ̂  = 1, and Da = 10 is shown in Figure.
1. It can be observed that Marangoni numbers ML, MPB,
and MIP are higher for smaller depth ratio  values and
then gradually decrease with further increase in . Also
as RI increases, the TMN ML, MPB, and MIP decreases,
thus destabilizing the system. This indicates that the
smaller values of this parameter are suitable to control
DBM convection. The effect of RI on the eigen value is
parallel for all the three profiles and is uniform for all
the  values.

The TMN versus  for the supplement parameters,
RI = T = 0.5, a = ̂ = 1, Da = 10 , and various values of RIm
 = 0.43, 0.47, 0.5 are shown in Figure 2. Increase in RIm
decreases TMN in all three profiles and thus

destabilizes the system. Also the diverging curves
depict that the effect of RIm is more for higher values of
, that is, it is effective for fluid layer dominant (FLD)
composite systems. The smaller values of internal
Rayleigh number are suitable to control DBM
convection for the chosen set of parameter.

The effect of T for a set of fixed values RI = RIm = 0.5,
Da = 10 , and ̂ = a = 1 and for T = 0.36, 0.38, 0.4 are
depicted in Figure 3. The T value is higher for smaller
depth ratio and gradually decreases as  increases. It
is observed that the TMN for all the profiles considered
decreases as T increases, as a result, the system is
destabilized. In addition, the converging curves show
that in PLD composite systems, the effect is significant.

To analyze the permeability on the onset of DBM
convection in the porous layer, we have plotted in
Figure 4, the values of TMN as a function of ,
considering different values of Da = 10, 20, 100 and RI =
RIm = T = 0.5 and a = ̂ = 1 . It is seen that increase in Da
decreases the TMN in all three profiles and thus
enhancing the onset of DBM convection.

The effects of ‘a‘ for the fluid layer on the TMN
when RI = RIm = T = 0.5, Da = 10, ̂ = 1 are shown in
Figure 5 while a = 1.18, 1.19, 1.2. We observe that TMN
increases as wave number increases in all three
profiles thus stabilizing the system. Physically, the size
of the convection cells decreases as the wave number
increases.

Figure 3: Effects of T Figure 4: Effects of Da
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6. Conclusion

The effects of uniform and non-uniform temperature
profiles on the onset of DBM convection in a single
component composite system with variable heat
sources is studied analytically by exact method. The
following are the findings:

1. The comparison of TMNs from the graphs show
that linear profile is the most stabilizing basic
temperature profile. As a result, this profile can
be used to effectively control the DBM
convection.

2. MIP < MPB < ML for porous layer dominant
composite layer systems and MPB < ML < MIP for
a composite system with a fluid layer
dominating.

3. The eigen value, TMN decreases, that is DBM
convection can be preponed with increase in
values of RI, RIm, Da and T.

4. The TMN increases, that is, DBM convection can
be postponed with increase in wave number a.

5. The heat source’s strength has a significant
impact on DBM convection which either
stabilizes or destabilizes the system depending
on various other parameters chosen.
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