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Abstract

The impact of non-uniform temperature gradients on Rayleigh-Darcy convection in a composite system of couple
stress fluid is discussed. The composite system is bounded by stress-free surfaces and adiabatically insulated,
and the fluid-porous layers are coupled by employing appropriate interfacial boundary conditions. To determine
the eigen value, the regular perturbation method is used. The effect of dimensionless parameters on Rayleigh-
Darcy convection is analysed graphically, and it is demonstrated that the couple stress parameter and couple
stress viscosity ratio stabilise the system, while the opposite effect is observed for the Darcy number and thermal
diffusivity ratio.

Keywords: Rayleigh-Darcy Convection, Couple stress fluid, Composite system, Non-uniform temperature gradient.

*Corresponding author

Print ISSN : 0022-2755

Journal of Mines, Metals and Fuels
Contents available at: www.informaticsjournals.com/index.php/jmmf

1. Introduction

Composite layers are formed by combining fluid and
porous layers. The issue of heat convection in the
composite layer is encountered in a number of
technical, medicinal, and ecological applications.
Buoyancy-driven convection in the composite layer
has a variety of technical applications, including
geothermal reservoirs, grain storage, subsurface
pollution transport, and heat removal in nuclear
power plants, to name a few. Convective heat transfer
in Newtonian fluid layer with an overlaying porous
layer was the focus of early composite layer research.
A comprehensive literature evaluation of linear and
non-linear convections in a fluid-saturated porous
layer is presented in Nield and Bejan’s [1] book. Sun
[2] investigated the start of convection when a fluid

layer above a saturated porous layer is heated from
below. Many authors have investigated linear and
non-linear composite layer stability analysis [3-11].
According to a linear stability study, the critical
Rayleigh number in a porous medium decreases
continuously as the thickness ratio between the fluid
and the porous layer increases. Beaver-Joseph [12]
established slip conditions at the porous-fluid
interface, while Ochoa-Tapia and Whitaker [13]
introduced momentum transfer at the contact. [14-15]
have also investigated the fluid-porous interface
boundary conditions. Sumithra and Manjunatha [16]
studied parabolic and inverted parabolic temperature
profiles in a composite layer. Sumithraet al. [17]
studied Benard Marangoni convection in a porous
fluid layer. They studied source-sink temperature
gradients.
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The Stokes [18] theory is the simplest extension of the classical fluid theory that allows for polar phenomena,
such as an anti-symmetric stress tensor, couple stresses, and body couples. Couple stress is likely in fluids
containing extra molecules. Couple stress fluids include synthetic lubricants, colloidal fluids, liquid crystals, and
bio-fluids. Couple stress fluid’s technical uses include, to name a few, lubrication concerns with squeezing film
bearings, thrust bearings, and journal bearings. [19-23] employ the Darcy model and the Beavers- Joseph velocity
slip at the porous media/fluid layer interface to characterise the flow in a porous medium. Siddeshwar and
Pranesh [24] have explored both linear and nonlinear Boussinesq–Stokes convection. Shivakumara [25]
investigated convection in a fluid-saturated porous media with non-uniform temperature gradients. Sumithra
and Selvamary [26] revealed, when analysing surface tension-driven fluid convection in a composite layer, that
the couple stress parameter serves as a system stabiliser.

This research aims to investigate the effects of beated from below temperature gradient (HTG), cooled from
above temperature gradient (CTG) and step function temperature gradient on Rayleigh-Darcy convection (DRC)
in couple stress fluid.

2. Mathematical formulation

Consider couple stress fluid flow in a height-bounded 2D composite system with free surfaces on both sides. The
origin of the Cartesian coordinate system is created at the middle of the composite layer; from this point, the
horizontal x-axis and vertical z-axis are derived. A fluid layer occupies Region 1, whereas a porous layer
saturated with fluid occupies Region 2. The composite system’s lower and upper free surfaces are kept at different
constant temperatures Tl and Tu respectively, with Tl > Tu. In addition, gravity   exerts a downward force in a
vertical direction. In fluid layer, the Navier-Stokes equation describes the flow of fluid with couple stress, whereas
the Darcy equation governs the flow of the same fluid in porous layer.

The conservation of mass, momentum, energy, and the equation of state of the Region 1 are:
... [1]

... [2]

... [3]

The mass, momentum, energy, and equation of state of Region 2 are as follows:
... [4]

... [5]

... [6]

Here denotes velocity, pressure, gravitational force, viscosity, couple-stress fluid viscosity, temperature,
density, coefficient of thermal expansion, porosity, permeability, specific heat and ratio of heat capacities.   denotes
Laplacian operator, 0 denotes density at a reference temperature, The subscripts 1 and 2 refer to fluid and porous
regions respectively. Here  (u, v, w), P, , , ', T ,  , , , , K, Cp, E denoted velocity, pressure, gravitational
force, viscosity, couple-stress fluid viscosity, temperature, density, coefficient of thermal expansion, porosity,

permeability, specific heat, and heat capacity ratio.  denotes Laplacian operator, 0 denotes

density at a reference temperature T = T0, suffix 1 and 2 denotes fluid and porous regions respectively. Assuming
that the fundamentally stable state of the composite system is quiet, the temperature distributions are determined
to be
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... [7]

... [8]

Here,  represents the temperature of the interface, whereas the suffix b denotes the basic

state. Insignificant perturbations are applied as q*, P*,  *, and * for velocity, pressure, temperature, and density
for the goal of testing the stability of the fundamental solution. The perturbations caused by the quantities
represented by asterisks are insignificant; consequently, it can be substituted in the equations (1)–(6) and curl are
used twice to eliminate the pressure term from Equations (2) and (5). The variables are then functionally non-
dimensionalised and expressed h1, h2

1/1, 1/h1 and T0–Tu as the units of length, time, velocity, and temperature in
the fluid layer and h2, h2

2/2, 2/h2 and Tl – T0 as the equivalent characteristic values in the porous layer. The non-
dimensionalized equations of Region 1 and Region 2 are found with two unknowns w and  two variables.

Assuming  and  are periodic waves, normal mode solutions may be expressed as

... [9]

... [10]
Here,  is the frequency, and the wave number in x and y directions are denoted by l and m. Ordinary

differential equations can be derived from non-dimensionalised partial differential equations by substituting the
aforementioned formulae:

... [11]

... [12]

... [13]

... [14]

here,  denotes differential operator,  denotes wave number,  the Darcy number,

 denotes couple stress parameter, prandtl number and

Rayleigh number in fluid layer,   denotes the above

equivalent terms in porous layer. The relation between couple stress parameter in fluid and porous layers is

expressed as  and the relation between Rayleigh number in fluid and porous layer can be expressed

as 

We limit the analysis to stationary convection and use equations (11) to (14) to obtain the following equations,
as the concept of exchange of stability applies in this process.

... [15]

... [16]
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... [17]

... [18]
The composite system’s boundary conditions are as follows:

... [19]

... [20]

... [21]

Where,  is the thermal diffusivity ratio,  is the couple-stress viscosity ratio, 

viscosity ratio, and  thermal expansion coefficient ratio, and  depth ratio respectively.

3. Regular perturbation technique solution

The perturbation methods require the assumption of small parameters. At this point, we will use ‘a1’ as the
wavenumber, which is a very small number. The terms and are expanded sequentially, and then the set of terms
with the same power in ‘a1’ is solved until the answer is found.

... [22]

Eqs. (15) to (18) are solved using the composite system’s boundary conditions to determine the velocities W1
and W2 of Region 1 and Region 2.

The equation’s zero-order in a1
2 solution is given by:

... [23]

The first-order in a1
2, Eqs. (15)–(18) then reduce to

... [24]

... [25]

... [26]

... [27]
The composite system’s boundary conditions (19)-(21) reduces to

... [28]

... [29]
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... [30]

Equation (24) and (26) has a general solution as:

... [31]

... [32]

where
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The following solvability condition is obtained by integrating equations (29) and (31) between z = 0 and z =1,
applying the pertinent boundary conditions, and adding the equation that is produced; this process produces
the following result:

... [33]

here, f1(z1) and f2(z2) take different forms according to the basic thermal gradients. We
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Here are the equations for the critical Rayleigh numbers for HTG (Rc1), CTG (Rc2 ), and STG (Rc3 ) are in order.

... [34]

... [35]

... [36]

Here,

4.0 Results and Discussion

Analytical investigation into the influence of HTG, CTG, and STG on the onset of Rayleigh- Darcy convection of
couple stress fluid in a composite system. The graphs illustrate the fluctuation of the critical Rayleigh number as
a function of thermal depth for different values of couple stress parameter (Cp), depth ratio (ĥ), Darcy number
(Da), thermal diffusivity ratio (̂ T) , thermal depth in porous medium (m), and couple stress viscosity ratio (̂).
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We fix the values of the dimensionless parameters that
are viscosity ratio ̂  = 1, and thermal expansion
coefficient ratio ̂  = 1. Here, Rc1, Rc2 and Rc3 represent
the respective the critical Rayleigh number for HTG,
CTG, and STG, respectively.

The Figure A1, demonstrates the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters Cp = 0.5, Da = 0.003,
m = 0.5, ĥ = 1, ̂ T = 1, ̂ = 1. The graph demonstrates
that the curve for HTG declines for the thermal depth
0    0.4 and for the thermal depth 0.6    1
increases. Here, RDC destabilizes at smaller thermal
depths but stabilizes at greater thermal depths. With
CTG, the curve declines with increasing thermal depth,
rendering RDC unstable. In contrast, the STG curve
increases with increasing thermal depth, hence
stabilizing RDC. By establishing an appropriate
thermal gradient, the onset of RDC in composite
systems can be controlled.

In figure: A2(a, b, c) illustrates the deviance of Rc1,
Rc2 and Rc3 as a function of thermal depth () for HTG,
CTG and STG. For the fixed parameters Da = 0.003, m =
0.5, ĥ = 1, ̂ T = 1, ̂ = 1, ̂  = 1, ̂  = 1, and varying the
couple stress parameter Cp = 0.4, Cp = 0.6, Cp = 0.8. From
the graph, we notice that Rc1, Rc2 and Rc3 elevates as
the value of Cp increases for HTG, CTG and STG. As a
result, the rise in Cp delays RDC, this ultimately
results in the system becoming more stable.

In Figure: A3 (a, b, c) depicts the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters Da = 0.003, m = 0.5,
ĥ = 1, ̂T = 1, Cp = 0.5, ̂ = 1, ̂ = 1, and varying the couple
stress viscosity ratio ̂ = 0.5, ̂ = 0.7, ̂ = 1.0 from the
graph, we notice that Rc1, Rc2 and Rc3 elevates as the
value of ̂ increases for HTG, CTG and STG. As a result,
the rise in ̂ delays RDC, this ultimately results in the
system becoming more stable.

In figure: A4(a, b, c) depicts the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters ̂ = 1.0, m = 0.5, ĥ =
1, ̂ T = 1, Cp = 0.5, ̂ = 1, ̂ = 1, and varying the Darcy
number Da = 0.003, Da = 0.005, and Da = 0.007. From
the figure we observe that Rc1, Rc2 and Rc3 declines as
Da value increases for HTG, CTG and STG. Hence, the
increase in Da accelerates RDC and consequently
weakens the system.

In figure: A5(a, b, c) depicts the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters ̂ = 1.0, m = 0.5, ĥ =
1, Da = 0.003, Cp = 0.5, ̂ = 1, ̂ = 1, and varying the Darcy
number ̂ T = 0.6, ̂ T = 0.8, and ̂ T = 1.0. From the figure
we observe that Rc1, Rc2 and Rc3 declines as ̂ T value
increases for HTG, CTG and STG. Hence, the increase
in system. ̂ T accelerates RDC and consequently
weakens the system.Figure: A1, The cumulative influence of HTG, CTG, and

STG

Figure: A2 (a, b, c), Effect of Cp in the cases of HTG, CTG and STG
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Figure: A3 (a, b, c), Effect of ̂ in the cases of HTG, CTG and STG

Figure: A4 (a, b, c), Effect of Da in the cases of HTG, CTG and STG

Figure: A5 (a, b, c), Effect of ̂T in the cases of HTG, CTG and STG
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Figure: A6 (a, b, c), Effect of ĥ in the cases of HTG, CTG and STG

Figure: A7 (a, b, c) , Effect of m in the cases of HTG, CTG and STG

In Figure: A6(a, b, c) depicts the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters ̂ = 1.0 , m = 0.5, Da
= 0.003, ̂ T = 1, Cp = 0.5, ̂ = 1, ̂ = 1, and varying the
depth ratio ĥ = 1, ĥ = 1.2, and ĥ = 1.4. From the figure
we observe that Rc1 declines as ĥ value increases for
HTG. Hence, the increase in ĥ accelerates RDC and
consequently weakens the system. Whereas in the case
of CTG and STG we observe that Rc2 and Rc3
accelerates as ĥ value increases. Hence, the increase in
ĥ  delays RDC and consequently strengthens the
system.

In figure: A7(a, b, c) depicts the variation of Rc1, Rc2
and Rc3 as a function of thermal depth () for HTG, CTG
and STG. For the fixed parameters ̂ = 0.5 , Da = 0.003,
ĥ = 1, ̂ T = 1, Cp = 0.5, ̂ = 1, ̂ = 1, and varying the
thermal depth in porous medium m = 0.5, m = 0.7 and
m = 0.9. From the figure we observe that Rc1 and Rc3

declines as m value increases for HTG and STG. Hence,
the increase in m accelerates RDC and consequently
weakens the system. Whereas in the case of CTG we
observe that Rc2 accelerates as m value increases.
Hence, the increase in m delays RDC and consequently
strengthens the system.

5. Conclusion

The following are the analysis’s conclusions:
• The thermal depth of the fluid layer substantially

influences the beginning of RDC.
For  < 0.2 we have Rc2 > Rc1 > Rc3, that is CTG is

most stable.
For 0.2 <  < 0.6 we have Rc1 > Rc2 > Rc3, that is HTG

is most stable.
For 0.6 <  < 0.8 we have Rc1 > Rc3 > Rc2, that is HTG

is most stable.
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For 0.8 <  < 0.6 we have Rc3 > Rc1 > Rc2, that is HTG
is most stable.
• Larger values of Couple stress parameter Cp and

couple stress viscosity ratio ̂ and smaller values
of Darcy number Da govern RDC in a couple stress
fluid composite system for all temperature
gradients.

• In the case of HTG, RDC is delayed by lower levels
of ĥ, m, and ̂T. In the context of CTG, greater values
of ĥ, m, and ̂T delay RDC. In the case of STG, greater
values of ĥ delaying RDC.
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