
1.0 Introduction

Double diffusive convection is a phenomenon in fluid
dynamics that explains a type of convection that is
caused by two separate density gradients with
differing diffusion rates. The density fluctuations
within fluids under the force of gravity drive the
convection. Some literature on Double diffusive
Marangoni convection/flow and Non-Darcy flow are
by Herbert et al. (1981) gave a somewhat personal
opinion of the significant developments in double-
diffusive convection, a subject whose evolution has
been the outcome of a close interaction between
theoreticians, sea-going oceano-graphers and

Print ISSN : 0022-2755

Journal of Mines, Metals and Fuels
Contents available at: www.informaticsjournals.com/index.php/jmmf

laboratory experimenters. Applications in
astrophysics, geology and engineering have
subsequently emerged. Nithiarasu et al. (1997) explored
convective flow regimes on double diffusive free
convection in a porous medium for Darcy and Darcy-
Brinkmann cases. Using the Forchheimer-extended
Darcy equation, Shivakumara et al. (2006) investigated
the effects of quadratic drag and vertical through flow
on double diffusive convection in a horizontal porous
layer using linear stability theory. Costa et al. (2006)
considering the transition between stable and
oscillatory convection, investigated the double
diffusive convection. Umavathi et al. (2014) investigated
the commencement of thermosolutal convection in a
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fluid and above this porous layer lays a layer of the same fluid, with variable heat sources or sinks in both the layers double
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porous media saturated with nanofluid for variable viscosity and thermal conductivity. In a Darcy’s porous media
saturated with nanofluid, Dastmalchi et al. (2015) investigated the effects of Brownian motion and thermophoresis
on Double diffusive free convection. Sheremet et al. (2015) in a porous cavity saturated with nanofluid investigated
double diffusive convection using Buongiorno’s model. Sara et al. (2020) investigated the effect of anisotropic
permeability on a Darcy type double-diffusive bidisperse porous media. Manjunatha et al. (2020) examined double
diffusive Marangoni convection for Darcy model and Thermal Marangoni number was determined by solving
the ODE’s. For porous media in a vertical channel which was subjected to heat, Yen-Cho Chen (2004) examined
the linear stability analysis of mixed convection. Ashok et al. (2011) for a porous medium in a vertical pipe, looked
into the reports of mixed convection for non-Darcy case. In this problem the effects of uniform and non-uniform
temperature profiles on DDNBM convection in a composite layer with variable heat sources or sinks is
investigated. For all the three temperature profiles the effects of the Darcy number, wave number, internal
Rayleigh numbers, viscosity ratio, solute thermal diffusivity ratios, Solute Marangoni number, solute diffusivity
ratio and thermal diffusivity ratio on DDNBM convection are depicted graphically.

I. Mathematical formulation
Assume a composite layer which consists of a porous layer with depth d2 that is sparsely packed and saturated
with single component incompressible fluid and above the porous layer lays a layer of the same fluid with depth
d1, with heat sources or sinks Q1 and Q2 which depends on temperature in both layers. The lower layer which is
porous layer is rigid, while the upper layer which is fluid layer is free with Marangoni effects that depend on
temperature and concentration. The following equations are the governing equations:

Where, 1  is Velocity vector, T1 is the Temperature, C1 is the concentration, 1 is Thermal diffusivity of the
fluid,  is the Porosity, Q1 is the heat source/sink for fluid layer, 0 is Fluid density, t1 is time, 1 is Fluid viscosity,

P1 is Pressure, C1 is Solute Thermal diffusivity of the fluid, K is permeability of the porous medium, 

ratio of heat capacities, Cp is Specific heat and the quantities with subscript ‘2’ denote the same in the porous
layer and ‘1’ denotes the fluid layer.

}
}
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Both the layers the fluid and the porous layer are at rest in the fundamental state. According to Vanishree
and Sumithra (2020), we apply minute disturbances on the fundamental state for both the layers and the
obtained equations are non-dimensionalized using proper scale factors. The resulting equations which are
dimensionless are then exposed to normal mode analysis, leading to the following EV problem:

Where,  is the internal Rayleigh number in fluid layer,  is the internal Rayleigh

number in porous layer,  is the viscosity ratio,  is the Darcy number,  is the solute

thermal diffusivity ratio,  is the solute thermal diffusivity ratio in porous layer.

Eight velocity equations, four temperature equations and four concentration equations boundary conditions
are required to solve the above equations.

II Boundary conditions

Boundary conditions which are dimensionless and exposed to normal mode analysis are:

1. Velocity boundary conditions

... (15)
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2. Temperature boundary conditions (Adiabatic-Adiabatic)

... (16)

3. Concentration boundary conditions

... (17)

Where,  is the thermal Marangoni number (TMAN), T1 is the temperature and  is the

surface tension,  is the depth ratio,  is thermal diffusivity ratio,  is solute thermal

diffusivity ratio.

III Solution by Exact method
1. For vertical velocity distributions W1(z1) and W2(z2), the velocity equations (9) and (12)

are solved exactly and are obtained as,

Where,

Where,
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2. For concentration distributions S1(Z1) and S2(Z2), the solution equations (11) and (14) are
solved exactly and are obtained as,

Where

3. For Temperature distributions 1(z1) and 2(z2), the temperature equations (10) and (13)
are solved exactly for three temperature profiles:

3.1 TMAN for Linear Temperature Profile (LTP):
The LTP of the form g1(z1) = 1 and g2(z2)=1, is introduced in (10) and (13) and solving we obtain temperature

distributions 1(z1) and 2(z2) using (16):

Where 
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From the last velocity boundary conditions in (15), the TMAN for LTP is as follows:

Where

3.2 TMAN for Parabolic Temperature Profile (PTP):
The PTP of the form g1(z1) and g2(z2) = 2z2, is introduced in (10) and (13) and solving we obtain temperature

distributions 1(z1) and 2(z2) using (16):

Where
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From the last velocity boundary conditions in (15), the TMAN for PTP is as follows:

Where

R Sumithra, Deepa R Acharya and Archana M A



122 || Vol 70 (7A) | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels

3.3 TMAN for Inverted Parabolic Temperature Profile (ITP):
The ITP of the form g1(z1) = 2(1–z1) and g2(z2) = 2(1–z2), is introduced in (10) and (13) and solving we obtain
temperature distributions 1(z1) and 2(z2) using (16):

Where
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From the last velocity boundary conditions in (15), the TMAN for ITP is as follows:

Where
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IV Result and Discussions

The three TMNs ML, MP and MI versus  for the LTP,
PTP and ITP respectively are obtained for the
parameters horizontal wave number a1, Darcy number
Da, thermal diffusivity ratio T, solute thermal
diffusivity ratio 1, solute thermal diffusivity ratio in
porous medium 2, solute Marangoni number MS,
viscosity ratio ̂ , solute diffusivity ratio S, internal
Rayleigh numbers RI2 and RI1 for porous and fluid
layers respectively. For all three temperature profiles,
the effects of the specified parameters on the TMAN, M
vs  are visually illustrated in the given figures. The
curve patterns for LTP and ITP are same, however the
PTP has a slight difference. That is, when the value of 
increases, the TMAN increases for parabolic profiles,
while when the value of  increases for inverted
parabolic and linear curves, the TMAN initially
increases and subsequently drops for higher values
of ..

Effect of the af on the TMANs ML, MP and MI are
depicted in the Fig.1(a), 1(b) and 1(c) respectively. It is

observed that, for PTP the curves are diverging and for
LTP and ITP the curves are converging. Also, by fixing
, one can observe that the increase in the value of a1,
raises the values of the TMANs ML, MP and MI i.e., the
increase in the value of a1 stabilizes the composite layer
system for LTP, PTP and ITP, hence the DDNBM
convection is postponed.

The impact of ‘Da’ on the TMAN are shown in
Fig.2(a), 2(b) & 2(c) for LTP, PTP and ITP respectively
for Da=1,10,100. The curves are diverging as the value
of ‘Da’ increases for all the three profiles, indicating that
it is effective for the composite layer dominated by
fluid layer. As Da increases, the TMAN ML, MP
decreases in a composite layer dominated by porous
layer and increases for the composite layer dominated
by fluid layer. The same effect of ‘Da’ for ITP is to
decrease ‘MI’ in both the extent of layers. This indicates
the system is destabilized for ITP and stabilized for
LTP and PTP for composite layer dominated by fluid
layer.

The impact of S on the TMAN are shown in Fig.
3(a), 3(b) & 3(c) for LTP, PTP and ITP respectively for S

Figure 1. Wave number ‘a1’ on LTP, PTP and ITP
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= 0.5, 0.6, 0.7. For the lower values of , the curves are
converging for LTP and ITP. The increase in the value
of S decreases all the three TMANs ML, MP and MI.
This indicates the system can be destabilized for all the
profiles LTP, PTP and ITP by increasing this parameter,
hence DDNBM convection can be proponed.

The influence of T on the TMAN are shown in Fig.
4(a), 4(b) & 4(c) for LTP, PTP and ITP respectively for T
= 0.1, 0.2, 0.3. Here similar effects are noted for the three
profiles and this parameter is effective for the
composite layer dominated by fluid layers. The
increase in the value of T decreases the TMAN for LTP
and PTP, the same effect, decreases MI for the ITP for
fluid layer dominant composite layers, where as for
the composite layer dominated by porous layer, the
TMAN decreases for the ITP.

The effects of MS on the TMAN are shown in Fig
5(a), 5(b) & 5(c) for MS = 25, 26, 27. Here, similar effect is

observed for all the profiles, LTP, PTP and ITP i.e., the
TMAN decreases with increase in MS which shows that
the composite layer system is destabilizing for all the
profiles. In case of PTP the curves appear to diverge
whereas the curves converge for LTP and ITP proving
its effectiveness for lower values of .

In Fig 6a, 6b, 6c the effects of ̂  = 0.1, 0.2, 0.3 are
shown. Here, similar effect is observed for all the three
profiles, LTP, PTP and ITP i.e., the TMAN increases with
increase in ̂  which shows that the composite layer
system is stabilizing for all the profiles and DDNBM
convection is postponed. The curves converge for LTP
and ITP and are found diverging for PTP.

The effects of 1 on the TMAN are shown in Fig.7(a),
7(b) & 7(c) for the values of 1 = 0.65, 0.7, 0.75. Here,
similar effect is observed for all the three profiles, LTP,
PTP and ITP i.e., increase in 1 increases TMAN which
shows that the composite layer system is stabilizing

Figure 2. Darcy number ‘Da’ on LTP, PTP and ITP

Figure 3. Solute diffusivity ratio ‘s’  on LTP, PTP and ITP
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Figure 4. Thermal diffusivity ratio ‘T’  on LTP, PTP and ITP

Figure 5. Solute Marangoni number ‘Ms’  on LTP, PTP and ITP

Figure 6. Viscosity ratio ‘̂ ’  on LTP, PTP and ITP
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Figure 7. Solute thermal diffusivity ratio for fluid layer ‘1’  on LTP, PTP and ITP

Figure 8. Solute thermal diffusivity ratio for porous layer ‘2’ on LTP, PTP and ITP

Figure 9. Internal Rayleigh number for fluid layer ‘RI1’  on LTP, PTP and ITP
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for all the profiles, hence DDNBM convection can be
postponed. The curves converge for LTP and ITP and
are found be diverging for PTP.

The effects of 2 on the TMAN are shown in Fig 8(a),
8(b) & 8(c) for the values of 2 = 0.1, 0.5, 1. Here, similar
effect is observed for increase in 2 increases ML, MP and
MI, which shows that the composite layer system is
stabilizing for all the profiles, so DDNBM convection is
postponed. The curves are converging for all the three
profiles indicating its effectiveness for lower values of
..

In Fig. 9(a), 9(b), 9(c) the effects of RI1 = –0.1, 0.5, 1
(sink to source) on ML, MP and MI are shown. The
curves are found to be diverging and also the as RI1
increases TMAN decreases for all the three profiles,
which is physically reasonable. This shows the effect
of RI1, is to destabilize the system and hence its effect
is to prepone DDNBM convection.

The effects of RI2 on the TMAN are shown in
Fig.10(a), 10(b) & 10(c) for LTP, PTP and ITP respectively
for RI2 = 0.1, 0.2, 0.3. The curves are found diverging
drastically for LTP, PTP and ITP. The increase in the
value of RI2 increases the TMAN for the PTP and
decreases the TMAN for the LTP and ITP. Hence the
increase in the value of RI2 stabilizes the composite
layer system for PTP and destabilizes for the other two
profiles.

V. Conclusions

From the investigation considered, the following
conclusions can be drawn for set of parameters
considered in this study,
1. The most stable profile is inverted parabolic, which

can be used to control DDNBM convection, whereas

Figure 10. Internal Rayleigh number for porous layer ‘Rim’  on LTP, PTP and ITP

the most unstable profile is the parabolic, which can
be used to augment DDNBM convection.

2. For Parabolic profile larger values of , the
parameters a, Da, T, Ms, ̂ , 1, RI1 and RI2 are
significant. For lower values of , the ̂  and 1 are
effective.

3. In the Linear profile for larger values of , the
parameters a, Da, T, Ms, RI1 and RI2 are effective.
For lower , S, Ms, 1, 2 are significant.

4. In the Inverted parabolic profile for larger values of
, the parameters a, Da, T, Ms, ̂ , RI1 and RI2 are
appropriate. For lower , the Ms, ̂ , S, 1, 2 are
effective.
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