Journal of Mines, Metals and Fuels, 71(4): 545-551; 2023. DOI: 10.18311/jmmf/2023/33936

Print ISSN : 0022-2755
Journal of Mines, Metals and Fuels

Contents available at: www.informaticsjournals.com/index.php/jmmf

Improving Business Deliveries for Micro-services-
based Systems using CI/CD and Jenkins

Vinay Singh!, Amarjeet Singh?, Alok Aggarwal3*, Shalini Aggarwal and Himanshu
Chaudhary>

1.238chool of Computer Science, University of Petroleum & Energy Studies, Dehradun, India.
*Graphic Era Hill University, Dehradun, India.
SManipal University Jaipur, Jaipur India

Abstract

Micro-services architecture has changed the paradigm of software designing and software development behaviour as they
are lightweight, easy adoptable, faster to be built and deploy at business servers. The nature of today's market changes so
abruptly that the software industry faces problems or impediments to hit the market demand due to complex, large, monolith
clumsy applications which are complex to be broken easily and eventually fails to hit time-to-market approach. In this
work, a novel migration approach has been proposed to improve the business deliveries and cover time-to-market approach
by using advanced Continuous Integration and Continuous Delivery process and sophisticated Devops and cloud tools
like Jenkins, Git and Amazon cloud which has micro-services deployed in the containerization form. Finally, a model and
a robust system has been investigated and proposed in terms of decomposition, testing, security, performance, inter service
communication, persistence, transaction management aspects. The whole analysis revolved around to propose a novel
approach to how to reduce the build and deployment time and make the end business product available to end customer in

a faster and rapid way.

Keywords: Version Control System,; Git, Subversion; micro-service; Kubernetes, container; Jenkins; Spring Boot;

Monolithic; CI/CD

1.0 Introduction

Micro-services architecture has changed the paradigm of
software designing and software development behaviour as
they are lightweight, easily adaptable, and faster to be built
and deployed at business servers. The volume and
architecture of enterprise applications are very large and
complex so they always intend and expected to be built easily,
easily scalable, fault-tolerant and work independently. Several
organizations strive to achieve better, faster and customer-
oriented business applications by developing the fault-
tolerant system. However, several industries are facing the

-
Author for correspondence

problem of meeting the demand of end customers within the
time-frame or as per market demand for it. The market is
changing and it is volatile in nature. The nature of today’s
market changes so abruptly that software industry faces
problems or impediments to hit the market demand due to
complex, large, monolith clumsy applications which are
complex to be broken easily and eventually fail to hit the time-
to-market approach. It has been observed that there are very
few works available on how to improve business deliveries
by adopting Micro-services and implementing a better
Continuous Integration (CI) and Continuous Delivery (CD)
pipelines which makes the end product available to end
customer on time. CI emphasizes and supports that the
software industry must find out the production errors and

Vinay Singh, Amarjeet Singh, Alok Aggarwal, Shalini Aggarwal and Himanshu Chaudhary

software defects at early stage rather than in production
environment. In this work, focus has been on how to
implement a robust, steady and automated CI/CD pipeline
which builds the micro-services faster, error-free, and deploys
it to business servers before the market need the product
feature. Several inputs have been taken and fed them to
measure whether really micro-services and CI/CD are capable
enough to meet the business demands before time or not. A
comparison between micro-services and monolith
applications have been analyzed in terms of build and deploy
time, scalability, fault tolerance and time-to-market.

A typical process to improve the business readiness and
final end product in the form of micro-services involves the
following steps:

» Identify business functional components

* Prioritized and defector components

* Designing the micro-services using Spring Boot
framework and architecture

» Setting up continuous integration and continuous
deployment pipelines using Jenkins and PCF

* Build the micro-services using Git, Jenkins, Python and

Angular
» Deploy the micro-services to Containerized environment
* Measure the different parameters like build and

deployment time
» Total time to scale-up and scale-down in peak traffic flow
» Total latency difference between monolith and Micro-

services
» Systematic scalability difference between monolith vs

Micro-services
« Total time spent in infrastructure readiness for business

production servers (time-to-market)

Due to its inherited advantages and benefits, for the past
few years the software industry has strived to migrate from
monolithic legacy systems to a micro-service architecture. A
monolithic application architecture support only a single
unified dependable unit while a micro-services architecture
entails to smaller, independently deployable services, which
are lighter in weight and easily deployable. They consume
less CPU resources or memory and are faster in response.
micro-services, as opposed to monolithic apps, are compact,
autonomous entities that focus on certain functions and
collaborate with others to support an application’s operation.
The benefit of a micro-service architecture is that developers
can deploy features that prevent cascading failures!-.
Monolithic application is designed in such a way that using
a monolithic architecture structure, if production fails in one
subcomponent of the architecture, it will ruin and breaks all
architectural components altogether. On the other hand the
beauty of micro-services is that each subsystem is
independently written and with a micro-services architecture,
if one service fails, it is much less likely that other parts of
the application will fail because each micro-service runs

546 | Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

independently. Various results have been achieved, which
clearly indicate that micro-services are faster, easier, and error
free to end real customer in real-time business environments
as they are easy to scale up, faster to build, have low latency,
fault-tolerant and hits time-to-market factor®-!2.

Continuous Integration and Continuous Delivery helps
the software world to find the bugs in the code issues and fix
it faster, which entails to faster application delivery times and
decreased time to market factor. Modern applications make
use of Dev-Ops practices like CI/CD to reduce several
duplicate tasks which can increase development time and
consume unnecessary time to deploy to Business
servers'3-13, Figure 1 shows the Dev-Ops eco-system for
micro-services. In CI/CD process, CI which means continuous
integration merges incremental code changes to the main
version control repository on a regular basis as the developer
commit the change in code. This code merge or code check
indirectly call version control webhooks to trigger an
automated build process that runs unit and integration tests
to cover the software testing in an automated fashion. CI
process ensures that bugs and integration issues are detected
early in the development stages and aren’t propagated
through to production.

Dev-Ops is traditionally based on Agile methodology'¢-7.
Each software development environment advocates the
AGILE culture where open dialogue between the software
developers and the product owners, software testers,
architects and finally release managers are involved with
deployment, testing (the operations team) and maintenance
of the end product which business people use for their own
use cases, hence the name Dev-Ops. Dev-Ops approach adds
the feature of maintainability to the development
lifecycle!8-26, Continuous integration is another feature that
makes Dev-Ops faster and more efficient than agile. Few
researchers strive to improve the delivery of several Micro-
services, others focus on containerized culture like PCF,

=
T

Verification

i

Figure 1: DevOps eco system for micro-services

Journal of Mines, Metals and Fuels

Improving Business Deliveries for Micro-services-based Systems using CI/CD and Jenkins

OpenShift or Kubernetes problems and their real-time
challenges, but in these efforts, we never find the relationship
between the two different eco-systems.

2.0 Methodology and
Experimental Description

2.1 Installing Jenkins and Setting up
Continuous Integration and Continuous
Delivery Pipeline

Various steps used for installing Jenkins and setting up
Continuous Integration and Continuous Delivery pipeline are
given below.

Step 1:

Setup Jenkins

Setup docker

Execute these system commands:

systemectl start jenkins
systemctl enable jenkins
systemctl start docker

Step 2:

Open Jenkins console

Click New Item > create your first job
Step 3:

Choose freestyle project with name and save
Step 4:

Go to configuration section > SCM

Link Repository
Step 5:

Select Build option

Place shell script and Execute shell

The architectural flow of build and deploy of micro-
services from development to business production servers is
shown in Figure 2. Figure 3 shows how to set up Jenkins and
CI/CD pipelines to build micro-services. Bash Script written
for constructing CI/CD Pipeline for micro-services is shown
in Figure 4.

Constructing a rapidly deployable micro-services
architecture can bring better adoptability, maintainability and
agility, but it entails on the approach of how developers and
architects share code and data between micro-services and
prepare for Inter-Pods communication. Micro-services must
be constructed using design patterns and spring boot

Generate on catch/finally build-
> report.htmi
Stage Stage Stage Stage
Workflow Build/Launch
Start)" SCM Checkout Docker) - Test H> Deploy “(Workﬂow End)
v
Collect
Dependent Build/Launch > Integration Test
R*" Module 1 Module 1
3 =l -g»| Test Results
i i
o i ol Integration Test —
Build/Launch —
Module N Dependency N
> Smoke Test
> End-to-End
Test

Figure 2: Architectural flow of build and deploy of micro-services from development to business production servers

Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

Journal of Mines, Metals and Fuels | 547

Vinay Singh, Amarjeet Singh, Alok Aggarwal, Shalini Aggarwal and Himanshu Chaudhary

Stage Deploy Dev.'QA

=

Commit
Production

Figure 3: Setting up Jenkins and CI/CD pipelines to build microservices

#!‘bln/bash

0 "#rtaex.Starting CI CD Pipeline Tasks- #torasices
#-BUILD

echo "

&EhO " vas Bu1ld Phase Started :: Compiling Source Code ::
cd java_web_code

mvn 1nstall™

#-BUILD (TEST)

echo **

echo *..... Test Phase Started ::
{Jntegratlon testing/

mvn clean verify -P 1ntegration-test |

RUNNING=$(sudo docker inspect --format="{{ .State.Runming }}" $CONTAINER 2> /dev/null)

:f[s7 E]

ec 0
2
¢ sudo docker rm -f $CONTAINER
1

Testing via Automated Scripts

NER' does not exist."

run your container

echo **

Deployment Phase Started :: Building Docker Container ::

-d -p 8180:8080 --name devops_pipeline_demo devops_pipeline_demo

echo *
sudo docker run

#-Completion
P S _ v
ec:o *View App deployed here: Jhttp://server-1p:8180/sample. txt?
BCRO " e

Figure 4: Bash Script to construct CI/CD Pipeline for Microservices

framework, but no-code platforms can call a web service to
request data and return it much more quickly. Micro-services
are usually adopted and constructed as backend services

code is written and checked into distributed
version control system like Git. Obviously, the
way developers write and do programming on
their own systems is often faster than
deploying sharing resources on a web server.
Monolith system are complex in nature and
due to high dependencies, the build and
deploy mechanism in monoliths is more
complex and time-consuming and never hits
the time-to-market factor. Modules in micro-
services are isolated from each other, making
it easier to build and deploy. We built several
micro-services and found that the build and
deployment does not significantly increase if
we increase the huge number of Micro-
services at once but in the case of monolithic
applications, we see a significant amount of
time to build it once. This helps us to deploy
the application in real-time environments like
business production servers are faster and
smoother and ultimately hits time-to-market.
Figure 5 shows a comparison on build and
deployment time between micro-services and
monolith.

2.3. Latency in Monolith and
Micro-services

The digital transformation or modernization
of legacy applications from monolith
architecture to micro-service architecture is
getting increasingly popular in recent times.
Figure 6 shows how the latency increased
drastically in the monolith system for a range
0f 500 to 2500 HTTP calls per second which are
very small and incapable in the contemporary
business world where an average of trillion
transactions are served every day.

Build and Deployment Time of
Monolith vs Microservices Systems

—&— Microservices
—&— Monolith

1400
where it provides end API to call a service or group of
services. Micro-services are designed in such a way that 5 T
every scalable architecture makes it easy to design and é 1000
deploy so quickly and consume API backend services. g w00
Ultimately, it hits time-to-market and provides business values g
to the end customers. Web and mobile front-ends are user é 600
interfaces that leverage functionality provided by back-end 5 o
services. El

200
2.2 Software Code Build and "
Deployment Time 0

The two most important factors which play major role in
the software industry are speed and agility where software

548 | Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

10 20 30 40 50 60
No of Instances

Figure 5: A comparison on Build and Deployment time between
microservices and monolith

Journal of Mines, Metals and Fuels

Improving Business Deliveries for Micro-services-based Systems using CI/CD and Jenkins

Latency within Monolith vs Microservices Systems

g 8

—&— Microservices

Response Time
g

—&— Monolith

a Py &
L 2 . $.4 *

L

0 500 1000 1500 2000 2500 3000 3500
Requests per Second

Fig. 6. Latency statistics between Monolith vs Micro-services
based systems

2.4 Time to Market: Monolith vs Micro-
services

Reducing time-to-market is the first and foremost priority
for each organization and business. Reducing the time it takes
to get a product to market gives a competitive advantage that
allows staying ahead of contemporary competitors, respond
faster to market changes, and increase the business with the
latest modifications and better customer experience. Monolith
systems are typically harder to deploy because of their large
size and complex dependencies. It is experimentally proven
that micro-services are faster to be deployed and ready for
time-to-market, but monolith systems are complex and they
are not flexible enough if any change in the system is required
and require an entire change in the system hence cannot be
easily built and deployed. Figure 7 shows the total time spent
in infrastructure readiness for business production servers
(time-to-market).

600
Infrastructure Readiness(Time to Market) of

v) .)
S oo Monolith vs Microservices
%
5
.
£ %
£5 00
T I
3 %300
°8
g E Microservices
35200 r
ﬁ —&— Monolith
£ 100
o
- & o—=o

4 7 9 10 15 18 21 24 28 30 32 35
No of Applications

Fig. 7. Total time spent in infrastructure readiness for business
production servers (time-to-market)

Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

3.0 Results and Discussion

Micro-service engineering trends tend to result in sub-optimal
applications of this architecture fashion, driving an
environment in which groups begin to think that micro-
services are yet another embraced fad. Dev-Ops technology
also has significant business value. The approach increases
the quality of enterprise software applications while also
reducing delivery times. Dev-Ops technology also improves
business team productivity and growth. The Dev-Ops trend
has prompted many businesses to automate their software
deployment and release processes. Dev-Ops can support the
company by enhancing communication and teamwork within
the workplace. Frequent communication boosts efficiency,
and the more employees connect when working together, the
more they can maintain high-quality service. In that situation,
it is important to understand why Dev-Ops is a tool for
increasing employee productivity and camaraderie. These are
some of the reasons why Dev-Ops is one of the most
effective tools for team management. Dev-Ops puts together
two critical aspects of the company processes, as the name
implies. The strategy incorporates operations and creation
under one roof. One umbrella could be a single team with
shared objectives. The business team takes care of every
stage of the Dev-Ops application lifecycle, including growth,
testing, and operations, thanks to the convergence of
business developments and business goals. There is an
option of testing the Dev-Ops approach to its limits. As a
result of the business automation enabled by Dev-Ops
technology, the business team will collaborate to introduce
new practices. Automation is one of the main advantages of
Dev-Ops because it allows for accelerated business
development by eliminating sluggish and manual processes.
Dev-Ops helps companies to grow at a fast and consistent
pace. Dev-Ops, on the other hand, can be extremely difficult
to implement if done incorrectly.

In a typical scenario, several micro-services are deployed
in real-time environments in several pods. Hence we must
have a proper design and a well-defined architectural flow of
these micro-services so that we can easily and correctly
communicate with each other and their backend API services
with clean interfaces for services and a convenient database
for each service. Finally, the software industries nowadays put
several efforts to overcome the problem of monolith
applications by fully migrating to micro-services.

Figure 8 shows the Python Script to build and deploy for
micro-services in CI/CD pipeline. Results show that micro-
services systems take very less time to be built and they are
considerably fast in response so eventually they take
significantly less amount of time to be built, deployed, and
considerably faster in response as compared to monolith
systems. Monolith systems are very expensive and hard to
scale-up and scale down based on business needs whereas

Journal of Mines, Metals and Fuels | 549

Vinay Singh, Amarjeet Singh, Alok Aggarwal, Shalini Aggarwal and Himanshu Chaudhary

micro-services-based systems are scalable and highly
independent in nature fault-tolerant and continuously
deployable.

deploy:
needs: [test]
runs-on: ubuntu-latest

steps:
- name: Checkout source code
uses: actions/checkout@v2

- name: Generate deployment package
run: zip -r deploy.zip . -x '*.git*

- name: Deploy to EB
uses: einaregilsson/beanstalk-deploy@v20
with:

// Remember the secrets we embedded? this is how we access them
aws_access_key: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

// Replace the values here with your names you submitted in one of
/! The previous sections

application_name: django-github-actions-aws

environment_name: djange-github-acticns-aws

// The version number could be anything. You can find a dynamic way
/1 Of doing this.

version_label: 12348

region: "us-east-2"

Fig. 8. Python Script to Build and Deploy for Microservices in
CI/CD pipeline

4.0 Conclusion

With some reports published by Gartner, it has been
evidenced that today, almost 71% of software companies,
many of which are among the major players in the IT market,
have already adopted the design pattern of micro-services
from their development, SIT, UAT and production business
servers. Whereas 6% of large companies, 50% of medium
companies, and 24% of small companies are using micro-
services in production and development. The Gartner
statistics show us that the adoption of micro-services with
the containerized approach is generally applied in business-
demanding environments where applications are critical and
require processing the data in real-time systems at peak hours
in the real-time system and within high real-time transactions
and even at massive scales a traffic flow allows jobs to be
conducted independently. In traditional monolithic
application development, subcomponents of monolith
applications are so tightly bound together that they become
so clumsy to redesign and scale up. Conversely, micro-
services are written in a well-designed Spring boot framework
that uses a modular design structure that enables software
designers and architects to code, test, and debug each small
independent component of the application without having a
dependency on the entire system.

550 | Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

In this work, a novel migration approach has been
proposed to improve the business deliveries and cover the
time-to-market approach by using advanced Continuous
Integration and Continuous Delivery process and
sophisticated Dev-Ops and cloud tools like Jenkins, Git and
Amazon cloud which has micro-services deployed in the
containerization form. Finally, a model and a robust system
has been investigated and proposed in terms of
decomposition, testing, security, performance, inter-service
communication, persistence, and transaction management
aspects. The whole analysis revolved around proposing a
novel approach to how to reduce the build and deployment
time and make the end business product available to end
customers in a faster and more rapid way.

4.0 References

1. Goyal M.K. et al. (2012): QoS based trust management
model for Cloud IaaS. In: 2nd Inter. Conf. on PDGC, pp.
843-847.

2. Kumar A., Krishan G. et al. (2016): Design and Analysis
of Lightweight Trust Mechanism for Secret Data using
Lightweight Cryptographic Primitives in MANETs.
Inter. Jour. of N/'w Security; 18 (1): 1-18.

3. V. Singh, A. Singh, A. Aggarwal and S. Aggarwal
(2021): Dev-Ops based migration aspects from Legacy
Version Control System to Advanced Distributed VCS
for deploying Micro-services. In: 2021 IEEE
International Conference on Computation System and
Information Technology for Sustainable Solutions
(CSITSS), pp.1-5.

4. Kumar A., Krishan G. et al. (2015): A Novel Trusted
Hierarchy Construction for RFID-Sensor Based Secure
Mobile Ad Hoc NETworks (MANETSs) using Error
Correcting Codes (ECCs). Electronics Tele. Research
Instt. Journal 2015, 37 (1):186-196.

5. Kumar Adarsh et al. (2013): Outlier Detection and
Treatment for Lightweight Mobile Ad Hoc Networks.
Lect. Notes of the Instt.for Comp. Sc., Social Info.&
Tele. Engg, 115, pp 750-763.

6. Kumar A, Aggarwal A, Charu. (2012): Efficient
Hierarchical Threshold Symmetric Group Key
Management Protocol for Mobile Ad Hoc Networks.
In: Parashar et al. (eds) Contem. Computing, Commiuu.
in Computer and Infor. Sc., 306, pp. 335-346.

7. Kumar A, Krishan G, and Aggarwal A. (2017): A Novel
Lightweight Key Management Scheme for RFID-
Sensor integrated Hierarchical MANET based on
Internet of Things. Inter. Jour. of Adv. Intel.
Paradigms; 9 (2-3): 220-245.

8. Aggarwal Alok, Singh Vinay and Kumar Narendra.
(2022): A Rapid Transition from Subversion to Git: Time,

Journal of Mines, Metals and Fuels

10.

11.

12.

13.

14.

15.

16.

17.

Improving Business Deliveries for Micro-services-based Systems using CI/CD and Jenkins

Space, Branching, Merging, Offline Commits & Offline
builds and Repository Aspects. Recent Advances in
Computer Science and Communications, 15(5).

Vinay Singh, Alok Aggarwal, Narendra Kumar, A. K.
Saini. (2021): A Novel Approach for Pre-Validation,
Auto Resiliency & Alert Notification for SVN To Git
Migration Using lot Devices. PalArch’s Journal of
Arch. of Egypt/Egyptology, 17 (9): 7131 - 7145.
Kumar A., Krishan G, et al. (2014): Design and Analysis
of Lightweight Trust Mechanism for Accessing Data
in MANETs. KSII Trans. on Internet and Infor.
Systems; 8 (3): 1119-1143.

V. Singh, A. Singh, A. Aggarwal and S. Aggarwal.
(2021): A digital Transformation Approach for Event
Driven Micro-services Architecture residing within
Advanced vcs. In: 2021 International Conference on
Disruptive Technologies for Multi-Disciplinary
Research and Applications (CENTCON), pp. 100-105.
Kumar A, Krishan G, et al. (2014): Simulation and
Analysis of Authentication Protocols for Mobile
Internet of Things (MIoT). In: Proc. 3rd Inter. Conf.
on PDGC, pp. 423-428.

Gupta P et al. Trust and reliability based scheduling
algorithm for cloud laaS. In: Lect. Noftes in Elec. Engg.
2013, 150, pp.603-607.

Kumar A., Aggarwal A. (2012): Lightweight
Cryptographic Primitives for Mobile Ad Hoc Networks.
Recent Trends in Comp. Net. & Distributed Systems
Security Comm. in Computer and Infor. Science; 335:
240-251.

Vinay Singh, Alok Aggarwal, Adarsh Kumar, and
Shailendra Sanwal. (2019): The Transition from
Centralized (Subversion) VCS to Decentralized (Git)
VCS: A Holistic Approach. Journal of Electrical and
Electronics Engineering, 12 (1):7-15.

Kumar A, Aggarwal A, and Charu. (2012): Performance
analysis of MANET using elliptic curve
cryptosystem. In: 14" Inter. Conf. on Adv. Comm.
Tech. (ICACT), pp.201-206.

Goyal MK, Aggarwal A. (2012): Composing Signatures
for Misuse Intrusion Detection System Using Genetic

18.

19.

20.

21.

22,

23.

24.

25.

26.

Algorithm in an Offline Environment. In: N.
Meghanathan et al. (eds) Adv. in Compu. and Infor.
Tech., Adv. in Intelligent Systems and Comp., 176, pp
151-157.

Adarsh Kumar et al. (2012): A complete, efficient and
lightweight cryptography solution for resource
constraints Mobile Ad-Hoc Networks. In; Proc. PDGC,
pp- 854-860.

Sangeeta Mittal et al. (2012): Application of Bayesian
Belief Networks for context extraction from wireless
sensors data. In: 14th Inter. Conf. on Advanced Comm.
Tech. (ICACT), pp. 410-415.

N. Chugh et al. (2016): Security aspects of a RFID-
sensor integrated low-powered devices for Internet-of-
Things. In: 4" Inter. Conf. on PDGC, pp. 759-763.
Singh T. et al. (2017): A novel approach for CPU
utilization on a multicore paradigm using parallel
quicksort. In: 3" Inter. Conf. on Compu. Intelligence
& Comm. Tech. (CICT), pp. 1-6.

Kumar A., Gopal K., and Aggarwal A. (2016):
Simulation and Cost Analysis of Group Authentication
Protocols. In: Inter. Conf. on Contemporary
Computing, pp.1-7.

Chakradar M et al. (2021): A Non-invasive Approach
to Identify Insulin Resistance with Triglycerides and
HDL-c Ratio using Machine learning. Neural
Processing Letters, 52 (3).

Mittal S. et al. (2012): Situation recognition in sensor
based environments using concept lattices. In: Proc.
Inter. Infor. Tech. Conf., pp.579-584.

Kumar A. and Aggarwal A. (2019): An Efficient
Simulated Annealing based Constrained Optimization
Approach for Outlier Detection Mechanism in RFID-
Sensor Integrated MANET. Inter. Jour. of Computer
Infor. Systems and Indus. Mgt. App; 11: 55-64.

V. Singh and A. Aggarwal. (2014): Performance analysis
of middleware distributed and clustered systems
(PAMS) concept in mobile communication devices
using Android operating system. In: 2014 International
Conference on Parallel, Distributed and Grid
Computing, pp. 345-349.

Vol 71(4) | April 2023 | http://www.informaticsjournals.com/index.php/jmmf

Journal of Mines, Metals and Fuels | 551

