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Abstract

With the rising needs of the energy resources, a lot of work has gone into the growth of the energy storage devices and its
technologies. Graphene is known to be the carbon nanomaterial having two dimensional structure (2D), high specific
surface area, good mechanical strength, good optical transmittance, larger electronic mobility, ultrahigh electrical
conductivity, and exceptional electronic and thermal conductivity. As a result, it is very appealing material for basic energy
storage unit for electrochemical devices like supercapacitor, solid-state batteries and flexible electronic devices. Addition
of graphene can improve the efficiency, capacity, durability and cyclicity of energy devices. In terms of applications, the
benefits of graphene have expanded its use in electroanalytical and electrochemical sensors. However, there is huge
literature based on the graphene synthesis by using various techniques and for their application in basic storage unit (cell)
are in progress to innovate the graphene structure and its morphologies. In this article, the recent growth in graphene and
its materials for the storage devices and conversion applications is reviewed. Also, it predicts the future development in
scalable manufacturing as well as other additional energy storage related applications.
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1.0 Introduction

Global population growth has resulted in increased energy
demand from global power consumption anticipated to rise in
the coming years. As a result, scientists and researchers must
create cost-effective and ecologically friendly sustainable,
clean, and renewable energy solutions to meet our society’s
expanding energy demands and difficulties1-6. Supercapacitor
and lithium-ion batteries (Li-ion) offering high power density,
high specific energy, high cyclicity, and flexibility7,8. With this
hydrogen (H2) also becoming the energy system which is in
use in sustainable energy without creating hazardous
byproducts. Power density of lithium ion cell depends on the
internal resistance and mobility of the charge. Graphene is

having large surface area and low electronic resistivity which
make it suitable for fast charging devices of the material.

Graphene is known to be an allotrope of carbon which is
densely packed in a honeycomb lattice structure contains
single layer C-C bond length of 0.142nm having sp2 hybridized
carbon atom which attains research motives for its versatile
properties9. In 2004, the discovery of graphene has reached
its enormous properties. It shows the various properties like
large specific surface area, high intrinsic mobility, Young’s
modulus, thermal conductivity, optical transmittance and
good electrical conductivity with current density of 1-2*108

A/cm2 10-16.
Different researchers have given different synthesis

techniques for graphene like mechanical exfoliation of
graphite, arc-discharge method, Hummer’s method and
modified Hummer’s method, chemical-vapor deposition
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method (CVD)17. Flow chart of graphene synthesis techniques
given in Fig.1.

The first attempt of graphene synthesis has been done in
the year 1975, the monolayer of graphene synthesis was first
discovered. Further, Lang and his team fabricated the
graphene with single and double layers by using chemical
thermal decomposition method on single platinum (Pt)
substrates19. But, the inconsistency between the graphene
sheets on Pt surface, leads to the failure of its applications.
Nevertheless, various efforts of graphene have been taken
place in 199920,21. In 2004, Novoselov et al22 discovered the
synthesis of graphene by using exfoliation process in their
first revelation. This method developed the new techniques
and fundamentals for the large scale production of graphene.
Summary of synthesis of graphene i.e. top-down method and
bottom-up method given in Table 2.

Furthermore, graphene and its composite have been
studied in wide research area of industrial application which
includes the transistors, sensors, solar cells, and
electrochemical devices like supercapacitor, solid-state
batteries and flexible electronic devices. In the designing of
nanocomposite, graphene found more appreciable. While
using transition metal oxides (TMO) to construct the
graphene, its specific capacity increases which leads in good

electrical conductivity, thermal conductivity and great cyclic
stability in lithium ion battery. For high-end electronic
applications, i.e. lithium ion battery, the concept of
synthesizing graphene utilizing nanocomposites gives long-
term cost-effectiveness and breakthroughs in the charging
and discharging process17. Several articles have been
published in the development of graphene and C-based
materials25-31. This research focuses on graphene its
derivatives for EES devices such supercapacitor, lithium air
batteries, lithium sulfur batteries (Li-S), and Li-ion batteries
(LIB). This review is arranged as follows: First, we’ll go
through some current research findings on the utilization of
graphene and its derivatives in supercapacitor and Li-ion cell
in the literature. After that, we’ll go through some of the
current efforts to commercialize graphene-based composites
in storage devices (ESS). Lastly, we go through the issues
and concerns that this discipline is dealing with, as well as a
summary, findings, and recommendations and possibilities for
future study.

2.0 Graphene Metal Composites
for Li-ion cell

The most popular energy storage device is LIB. It contains
tremendous different physical and chemical properties which
includes high density, voltage stability, longevity,
environmental security and low self-discharge rate. The
positive electrode (cathode), negative electrode(anode),
electrolyte, and separator are the four major components32-34.
Because of its exceptional qualities, graphene and graphene-
based composites have gained favour in the usage of
rechargeable Li-ion batteries. In this regard, graphene has a
high potential to store lithium, demonstrating that lithium may
be bonded on the both sides of graphene edges, graphene

Figure 1: Representation of synthesis techniques of graphene18

Table 1: Overview of graphene properties

Properties Graphene References

Specific surface area 2600–2620 m2 g–1 [11]
Typical electron mobility 200,000 cm2 V–1 s [12]
Thermal Conductivity ~5000Wm-1K-1 [13]
Thermal Resistance ~4*10-8Km2W-1 [14]
Young modulus 1Tpa [15], [16]
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sheets, and other sorts of defect sites. When used as a
conductive matrix, graphene may significantly increase
electron conduction in Li-ion batteries when in contact with
electrochemically active materials and efficiently check
material collection during the lithiation and delithiation
method35,36. As a result, graphene-based nanostructured
materials provide an interesting explanation to present
gravimetric energy density restrictions and problems37. The
author would like to address some experimental findings by
using graphene and its nanocomposites as an anodes and
cathodes materials.

2.1 Anodes

In lithium ion battery, the graphite anode having a specific
capacity of 372 mAh/g1. In 2008, Yoo38 and his colleagues
produced graphene nanosheets (GNS) to improve lithium
storage capacity, achieving a specific capacity of 540 mAh/g
by controlling the layered structure of GNS. Carbon nanotube
(CNT) and C60 were added to the graphene nanosheets to
increase the capacity to 730 mAh/g respectively. The
improved performance is attributed to an improvement in the
electrical of the new anode material, which can accommodate
more lithium38-42. Cheng et al. reported high energy density
of Nitrogen doped graphene and Boron doped graphene
electrode at low charge/discharge rate, the doped graphene
electrodes exhibits high capacity of 1043 mAh/g for N-doped
graphene and 1540 mAh/g for B-doped graphene65. Doped
graphene has the capacity to quick charge and discharge for

a short time (approximately 1h to seconds), allowing it to
achieve both rate capability and long-term cycles. In Table 3
anode made of graphene or graphene as anode composite is
summarized43.

2.2 Cathodes

In recent years, many researchers have given attention to
improve the energy density and power density of Li-ion
battery. Hence, graphene and its derivatives have been
presented for use in the cathode material to address
deficiencies in typical cathode materials such as low electrical

Table 2: Summary of graphene synthesis routes [23,24]

Synthesis method Layers Dimensions Advantages Disadvantages

Top-Down Method
Mechanical exfoliation Many layers µm to cm Large size Low yield
Sonication of graphene Mono and Multiple µm Low-cost Low yield
Electrochemical exfoliation/ Mono and 500-700 nm high electrical Require ionic
functionalization of Multiple layer conductivity, One step solids
graphene functionalization and

exfoliation
Graphene acid dissolution Mono layer 300-900 nm Unusual graphene Use of dangerous acid
Bottom-Up Method
CVD method Multiple layer 100nm Large size Difficult to scale up
Arc discharge Mono and 100 nm to  µm Graphene production Carbonaceous

multiple layer rate of 10 g/h impurities
Unzipping of CNTs Multiple layer few µm long Nanotubes are chosen Expansive raw

nanoribbons to manage the size material
Epitaxial growth on SiC Multiple layer Upto cm size High surface area Time consuming
Reduction of GO Multiple layer Sub-µm Unoxidized graphene Contaminated by aluminium

layers sulphide or aluminium oxide

Table 3: Electrochemical performance of anode made of
graphene or graphene composite for li-ion battery

Materials Specific Current
capacitance density
(mAhg-1) (Ag-1)

Graphene nanosheet (GNS) [38] 540 0.05
GNS/Carbon nanotube (CNT) [38] 730 0.05
GNS/C60 [38] 784 0.05
Graphene/SnO2 [44] 1996 1
Co3O4/rGO [45] 860 40
Mn3O4/reduced graphene oxide
(rGO) [46] 390 1.6
rGO/Fe3O4 [47] 1000 0.074
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conductivity, low specific capacity, and so on43. Like, olivine-
structured of LiMPO4 where M is used for iron, manganese,
cobalt (Co), or nickel (Ni) have been designed in such a way
that it is used as the promising cathode material for
rechargeable Li-ion batteries showing high capacity, cyclicity,
etc48-51. Some other graphene cathode material like rGO/
LiFePO4 shows the specific capacity of 146mAh/g and current
density of 17 mA/g. Likewise, LiMn0.75Fe0.25 Po4/rGo
(reduced graphene oxide) having the excellent Li-ion
storage52. In Table 4 cathode made of graphene or graphene
aa cathode composite is summarized.

3.0 Graphene based Material for
Supercapacitor

Supercapacitor are known to be the electrochemical
capacitors (ECs) or ultracapacitor which provide the facility
of power transfer at higher current rates. Supercapacitor can
be classified as hybrid/asymmetric capacitors, electrical
double-layer capacitors (EDLC), and pseudo-capacitors37. As
a result, ECs having energy density of 5-10 Wh/kg in

comparison with batteries, which vary from 120-170 Wh/kg
for lithium ion cell56. Hence, table 5 summarizes the current
achievements and challenges in attaining high power and
high energy density in supercapacitor depends on graphene
and graphene-based composites.

4.0 Conclusion and Future Aspects

Graphene and graphene-based composite shows the
promising result to fulfil current demand of energy storage
systems. As discussed, graphene-based cathode, anode and
supercapacitor shows excellent results, but commercialization
of these devices is still a challenge. Graphene composite
material used in these devices improve their electrical
parameter such as high electrical conductivity, high energy,
and power density. Further optimization of electrode for
battery technologies Li-ion, Li-Air, Li-S having graphene
composite can give promising result in smart electronics
gadgets. While synthesizing graphene, avoiding restacking
is challenging task. Cost-effective, standard procedure for
scalable amount of graphene or graphene composite are
some challenging areas future research work.
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