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I. Introduction

The integration of renewable energy sources to expand power
networks is a challenging task. Since renewable energy
sources are unpredictable, their energy output is non-
dispatchable, intermittent, and subject to significant
variations1. Such large oscillations due to the increasing
usage of renewable energy sources pose fundamental
questions about the quality of power. In presence of power
quality interruptions such as voltage sag, voltage swell,
harmonics, transients, interruption, flicker, notch, etc., the
quality of the electric power deteriorates. These interruptions
cause end-user equipment to malfunction which causes a
large financial loss. To improve power quality, it is thus
crucial to identify PQ disturbances as a foremost step toward
building a reliable network2.

In3, non-linear disturbances are categorized using a
variational mode decomposition approach, in which a band

of the signal is formed as a consequence of decomposition
into some mode function. A Stockwell transform along with a
Time-Time transform was implemented for signal synthesis
and features were selected using NSGA-II(non-dominated
sorting algorithm) in4. An innovative version of wavelet
transform known as tunable Q-wavelet transform was
introduced in6 for PQD signal conditioning and classified
using support vector machines. In7 features were extracted
from S-transform and Wavelet transform classified. A unique
deep convolutional neural network-based full-closed-loop
method for identifying and categorizing power quality issues
are described in8. An ant colony optimization model for the
same is presented in9. The aforementioned procedures are
efficient, but owing to the need for the acquisition of some
obvious features, they are challenging to master, and training
the model from scratch requires a lot more time and
complexity. As a result, the approach of transfer learning may
be employed for categorization.

This article compares and evaluates the appropriateness
of three deep-learning CNN architectures for categorizing
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power quality issues. The power quality disturbances were
converted into image-based data using a recurrence plot and
then sent to GoogLeNet, ResNet-50, and AlexNet. Using
explainable AI-gradCam, an attempt was made to demonstrate
categorization concepts on the operation of deep learning
black boxes. 

2.0 Database Preparation

The various classes described in this work are sourced from
the database shown in10. Signals are generated as per the
IEEE standard 1159-199511. Table 1 represents all 9 classes of
power quality signals and disturbances based on their class
type (single, double). Depending on the situation, some
characteristics, such as sampling frequency, sample
generation number, and fundamental frequency of the signals,
can be modelled. In order to create the power quality signals,
100 data per class of fundamental frequency signals at 50 Hz
were taken at a rate of 2 kHz. The signals generated were
converted from time series to data to image data through a
concept Recurrence plot12. The Grayscale images were
converted into RGB for fulfilling the input layer of CNN
architectures.

A. CNN-Convolutional Neural Network

In computer vision, CNN is a powerful deep-learning
technique that is frequently used for image categorization. The
core elements of CNN are as explained below:

Convolutional layer: The input image is processed using
a number of filter banks, also known as kernels, in the
convolution layer. In the forward paths, the filters are
transversely convolved with the input image’s height and
width separately. It returns a two-dimensional (2D) feature
map. The rectified linear unit layer, which follows the
convolution layer, raises the network nonlinearity via a
rectified function9.

Pooling layer: This layer decreases the feature map’s
dimension while retaining the important data that was
recovered by the convolution layer. The case of over-fitting
data is controlled by a variety of operators and downsizes
the sampling.

Fully connected layer: In the ultimate layer score is
provided according to the weights assigned from the pooling
layer. By transforming the 2D feature maps into a 1D feature
vector, it feeds forward the network and determines scores
for each category. The trained model is used by the Softmax
layer to forecast the likely class of the test data after
converting the scores into probabilities.

B. AlexNet CNN
AlexNet architecture developed by Alex Krizhevesky et

al.13, consists of eight layers, five of which are convolutional,
two are fully connected (fc6, fc7), and one is softmax.. AlexNet
input picture is 227×227 pixels in size. Fig.1 depicts the
AlexNet CNN organizational structure. The first and second
convolutional layers, respectively, employ 96 and 256 kernels
of sizes 11×11×3 and 5×5×48. A max pooling layer with 3×3
filters follows each convolution layer. The third and fourth
convolution layers use 384 filters each, and the fifth one uses
256. Next is max pool layer of kernel size 3×3 and then  the
softmax layer can classify up to 1000 class labels, receives
the high-dimensional feature vector from the fully linked layer.

C. ResNet-50 CNN
In14, ResNet, or Residual Network, was introduced, which

was 50 layers deep, and a vanishing gradient issue was solved
by enabling an additional short-cut conduit for the gradient
to flow through. ResNet’s skip connections address the issue
of disappearing gradients in deep neural networks. The
identity functions that the model learns from these linkages
assure that the upper layer will perform at least as well as the
lower layer, if not better.

D. GoogLeNet CNN
There are 22 layers in the architecture overall. The

architecture was created with consideration for computational

Table 1: Power quality disturbances signal

Class Class name Brief description

I Sine Fundamental waveform
II Sag Voltage reduced to 20% of nominal

voltage
III Swell Increase in nominal voltage up to

1.1-1.8 p.u.
IV Interruption Supply voltage/load current returns

to 0.1 p.u. for a moment<60 secs.
V Impulse Steady-state condition of voltage

affected by non-power frequency
change

VI Oscillatory An instantaneous change in polarity
Transients of the voltage/current.

VII Harmonics Integer multiples of fundamental
frequencies.

VIII Flicker Rapid variations in voltage waveform.
IX Notch Periodic disturbances in voltage

due to switching operation.

3.0 Conceptual Background

This section includes a brief discussion of how the
architecture used in the article can be modelled.
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effectiveness. the concept that even with limited processing
resources, the architecture may be used on individual
devices15. Two more classifier layers are included in the
design and are coupled to the output of the Inception (4a)
and Inception (4d) layers. The classifiers’ architectural
specifics include a typical pooling layer with a 5×5 filter and
a stride 3, for dimension reduction and ReLU activation, a1–1
convolution with 128 filters is used, layer with 1025 outputs,
and ReLU activation that is fully connected. A 1000-class
softmax classifier produces results comparable to the primary
softmax classifier.

E. Transfer Learning CNN

The amount of time to train a network from the beginning
is a significant problem for CNN. The pre-trained models’
weights are added to the current model in transfer learning
Only the classification layer and the final few hidden levels
of the CNN network are replaced with new layers that have
distinct weights and learning rates. This trains the network
for the current task rather than training it entirely starts with
random weights. The network’s training time is significantly
cut down through this process, making the network
computationally faster and functioning reasonably well.

4.0 Visualization of CNN
Architectures

Despite the algorithms’ apparent effectiveness, there is a
problem with them since they are inherently difficult to
understand because deep learning algorithms are frequently
highly complicated. The conclusions and suggestions
produced by the algorithms in Section III may therefore be
difficult for professionals in the field of power systems to
trust, which reduces their actual utility. This challenge is
particularly evident in situations requiring a high degree of
dependability, which is frequent in the energy sector. This
section deals with reason of the decision-making of the
algorithms.

GradCAM is a method for visualizing the model’s
concentration that has been extensively researched in the area
of classification in two dimensions. It creates a rough
localization map emphasizing the key areas in the image for
prediction with the aid of gradients of any target theme
flowing into the final classification layer. In this article, we
employ the GradCAM approach16, which enables
visualization of the input areas crucial to these models’
predictions, thereby increasing the transparency of CNN-
based models. Using the gradient data feeding into the last
convolution layer of the CNN, GradCAM calculates each
neuron’s relevance for a significant decision.

5.0 Results and Discussion

In the current work, a total of 1350 data images were taken,
with 100 images in each class. The split ratio of the obtained
pictures for training and testing was 70:30. Thus, 945 images
altogether were used to train the architecture, and 405 images
were used for testing. In the model, the newly created,
completely linked layers were trained. The learning rate was
maintained at 0.001. The number of epochs in this work is
limited to 20, and 580 iterations were carried out for training,
yielding an average of 29 iterations per epoch. Each
architecture was evaluated at the fixed metric such as epoch
and learning rate for accurately classifying PQD signals. In
Table 2, deep learning classification results can be observed
where the maximum accuracy is 96% belonging to ResNet-50
architecture.

Table 2: Accuracy comparison of architectures

Accuracy (in %)

AlexNet GoogLeNet ResNet -50

88 93 96

A. Performance Evaluation of CNN
Architectures

For validating the potency of the architecture on the
ground of accuracy, a random signal belonging to each class
was generated. The chosen signal was neither the part of
training dataset nor the testing dataset. Table 3 displays the
architecture’s outcomes after being subjected to random
signals. The purpose was to observe the behaviour of each
architecture concerning a given input. ResNet-50 showed
100% accuracy in predicting all the validation images
precisely, whereas AlexNet predicted impulse signal image as
sine signal image and GoogLeNet predicted impulse as sine
and oscillatory signal as impulse signal. Thus, it can be
concluded that the ResNet performed best among all the other
techniques based on the classification of random images fed
to the architecture.

B. GradCAM Explainability of CNN
Architectures

A system that uses artificial intelligence (AI) to assist
power quality experts should be somewhat explicable and
should let the human expert review the possibilities and
exercise judgment. Illustration in Fig.1 is carried out by
utilizing the concept of GradCAM – an explainable Artificial
Intelligence method. The classification result is passed to
Grad-CAM, which generates maps for each predicted score.
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The most important feature with a high score is localized on
the map, thus highlighting the red area as shown in Fig.1.
Figs.1 (A) and (E) are the images of interruptions and impulse
data. From Table 3, interruptions data was found to be
accurately predicted by all three architectures and the reason
behind the accurateness can be seen in Fig.1 where (B)
enhances those parts of the image which belong to the

features created by ResNet-50; (C) and (D) does the same
with AlexNet and GoogLeNet respectively.

For the misclassified signal i.e., impulse, Fig.1(E) was fed
to the ResNet-50 resulting in accurate prediction of it as an
impulse signal, which is visually explained using the features
highlighted in (F). On the other hand, the AlexNet in (G) and
GoogLeNet in (H) falsely predict impulse as sine. A very soft

Table 3: Power quality disturbance prediction result

Signal AlexNet GoogLeNet ResNet-50

Actual PQD Predicted Predicted Predicted Predicted Predicted Predicted
signals PQD Score of PQD PQD Score of PQD PQD Score of PQD

Sag Sag 0.9959 Sag 1 Sag 0.9998
Swell Swell 0.9987 Swell 0.9999 Swell 0.9999

Interruptions Interruptions 1 Interruptions 1 Interruptions 1
Impulse Sine 0.0209 Sine 0.1944 Impulse 0.9648

Oscillatory Oscillatory Oscillatory
Transients Transients 1 Impulse 0.2714 Transients 0.9998

Harmonics Harmonics 1 Harmonics 0.9671 Harmonics 0.8336
Flicker Flicker 0.9999 Flicker 0.9999 Flicker 1
Notch Notch 0.9472 Notch 0.9927 Notch 0.9952

Fig.1: (A) is the RP image of interruption signal. (B), (C), (D) are the gradCAM enhanced features of the image on the basis of which
ResNet-50, AlexNet and GoogLeNet predicted the class of the image (A) respectively. (E) is the RP image of impulse signal.

(F), (G), (H) are the gradCAM enhanced features of the image based on which ResNet-50, AlexNet and GoogLeNet predicted the class
of the image (E) respectively
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claim can be presented here that the number of features used
in AlexNet and GoogLeNet is more elaborated and sometimes
may result in misjudging the classes whereas ResNet-50 uses
more compact features, therefore, succeeding in classifying
power quality disturbances signals.

6.0 Conclusions

The current investigation deals with the comparative
evaluation of the application of a transfer learning methods
that use the recurrence plot methodology to distinguish
between different PQD signals. The transfer learning
techniques such as ResNet-50, AlexNet, and GoogLeNet were
compared and evaluated for the suitability of classifying PQD
signals. The architectures were tested on randomly selected
signals. Resnet-50 was found to accurately identify all the
eight classes of PQD signals. On the other hand, GoogLeNet
and AlexNet were associated with false classification of PQD
signals. Thus, a conclusion was obtained indicating ResNet-
50 as the best model to work with power quality disturbance
detection. Accuracy, classification probability, and
explainability through GradCam - an explainable AI technique
were implemented as a grading reference for the comparative
evaluation. Further research is being carried out to extend the
present work for identification of other mixed PQD signals.
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