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1.0 Introduction
In the metals, mines, and minerals industries, fluid flow 
plays a critical role in processes such as ore extraction, 
transport, and refinement. Understanding the stability 
of these flows is essential for preventing disruptions and 
optimizing efficiency. Similarly, in the fuels industry, 
stability analysis is indispensable in ensuring the smooth 
and reliable transport of liquid fuels through pipelines 
and distribution networks. This research addresses the 
specific needs of these industries by shedding light on 
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the stability characteristics of Casson fluid flow through 
porous media under the influence of a magnetic field. 
Such knowledge has the potential to revolutionize the 
design and operation of fluid systems within these sectors, 
resulting in enhanced reliability and efficiency.

In recent years, the study of fluid flow stability has 
captured the attention of scientific researchers, owing to 
its wide-ranging applications across various domains of 
applied engineering, including mechanical engineering, 
chemical engineering, meteorology, geophysics, 
astrophysics, atmospheric sciences, medical sciences, and 
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Abstract
A detailed study is made on the stability of linear two-dimensional disturbances of Plane Poiseuille Flow (PPF) of Casson 
fluid through porous media in the presence of a vertical uniform magnetic field,

 
which is extremely useful in metals, mines, 

and fuels industries. Using the method of normal modes, the disturbance equations are derived. The resulting eigenvalue 
problem is then solved by the spectral collocation method using Chebyshev-based polynomials. The critical values of 
the triplets (Rec, αc, cc) are obtained for various values of the Casson parameter, η, Hartmann number, Ha, and porous 
parameter, 

 
σp. The stability of the system is discussed using the neutral stability curves for each value of the parameters 

present in the problem. It is found that the stability regions are enlarged for small values of η and large values of the porous 
parameter, σp and Hartmann number, Ha. It is also observed that the stability characteristics of plane Poiseuille flow in a 
porous medium are remarkably different from non-porous cases. The results obtained here contribute to the contemporary 
efforts to better understand the stability characteristics of PPF of Casson fluid flow through porous media in the presence 
of a uniform transverse magnetic field. 
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biological systems. Understanding the stability of fluid 
flow is crucial for optimizing processes and systems in 
these fields.

Researchers have employed a plethora of numerical 
and analytical methods to tackle the complex equations 
that arise when addressing stability issues. The renowned 
Orr-Sommerfeld equation, which characterizes stability 
in fluid flows, has been a focal point of investigation. 
Valuable insights into these methods can be found in 
the works of Drazin1, Tritton2, Drazin3, Criminale4, 
and Chandrashekar5. Orszag6, for instance, employed 
numerical solutions based on Chebyshev polynomial 
expansions and the QR matrix algorithm to determine a 
critical Reynolds number of 5772.22, marking the threshold 
at which flow stability is ensured. Chock7 utilized the 
Runge-Kutta procedure, achieving remarkable accuracy 
through Chebyshev polynomial methods. Dowell8 
harnessed orthogonal function expansion to calculate 
a critical Reynolds number of 5750, demonstrating the 
reliability of these techniques. Similarly, Makinde9 and 
Basavaraj10 applied the Chebyshev collocation and Galerkin 
methods, respectively, both yielding accurate results. The 
Casson fluid model has emerged as a significant player 
in contemporary fluid dynamics research, driven by its 
relevance in various practical applications. Notably, this 
model has been applied to mathematically describe blood 
flow in narrow arteries under low shear rates, making it 
vital in medical and biological contexts. Mustafa11, for 
instance, investigated the analytical solutions for unsteady 
flow and heat transfer of a Casson fluid, revealing that 
nondimensional time affects temperature positively 
while diminishing velocity. The magnetohydrodynamic 
(MHD) flow of Casson fluid through permeable 
stretching or shrinking sheets with mass transfer near 
walls has also been explored by Bhattacharyya12. Casson 
fluids with high yield stress, a non-Newtonian variant, 
have found widespread use in modeling blood flow in 
narrow arteries and have critical applications in polymer 
processing industries and biomechanics. Additionally, 
this rheological model proves suitable for characterizing 
blood and plasma behavior. Nadeem13 and Fung14 have 
highlighted its suitability for blood flow modeling, while 
Boyd15 and Kandasamy16 emphasize its applicability in 
plasma studies. Various models have been proposed to 
elucidate non-Newtonian fluid behavior and its extensive 
applications17-20. Remarkably, despite the substantial body 
of research in this field, there has been a notable gap in 

the exploration of instability in magnetohydrodynamic 
channel flow through porous media for Casson fluids.

Recent studies have contributed significantly 
to the understanding of Casson fluid behavior 
and its applications. Asogwa21 explored the 
magnetohydrodynamic (MHD) Casson fluid flow over a 
stretching sheet while considering heat and mass transfer. 
This investigation provides insights into the complex 
interplay of magnetic fields, fluid dynamics, and thermal 
and mass transfer phenomena. Ridhwan22 delved into the 
analytical solution of the impact of the Caputo-Fabrizio 
fractional derivative in the context of Casson fluid flow. 
This work extends our knowledge of the fundamental 
properties of Casson fluids and their fractional derivatives, 
which have practical implications in various applications. 
Saravana23 and Eshwara Rao24 conducted studies focusing 
on thermal radiation and diffusion effects in Casson flow. 
These investigations examine how heat and mass transfer 
interact with the unique rheological properties of Casson 
fluids, providing crucial insights for applications in heat 
exchangers, chemical processes, and environmental 
engineering. Tunde25 examined the entropy generation 
in MHD Casson fluid flow, shedding light on the 
thermodynamic aspects of these flows, with implications 
for energy efficiency and process optimization. Kudenatti26 
addressed the temporal stability of linear Plane Poiseuille 
Flow (PPF) of Casson fluid with high yield stress in the 
presence of a magnetic field. This research offers valuable 
insights into the stability characteristics of Casson fluid 
flow, particularly in scenarios involving magnetic fields, 
which are relevant to various industrial applications. 
Kouz27 and Santoshi28 conducted numerical analyses of 
three-dimensional Casson fluid flow with constant heat 
flux, contributing to our understanding of the complex 
behavior of Casson fluids in real-world situations, such 
as chemical processing and heat transfer systems. These 
studies collectively enhance our knowledge of Casson 
fluid behavior and have practical implications across 
various fields of engineering and science.

To address this gap, our study aims to investigate 
the hydromagnetic stability of linear two-dimensional 
disturbances in Plane Poiseuille Flow (PPF) of Casson 
fluid through porous media in the presence of a vertical 
magnetic field. This research holds significant promise for 
the metals, mines, minerals, and fuels industries, where 
the control and optimization of fluid flow are pivotal to 
various processes and systems. In particular, the study 
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is expected to provide valuable insights into stability 
characteristics that can enhance the design and operation 
of fluid-related processes in these industries.

2.0 Formulation of the Problem
A systematic sketch of flow configuration and the 
coordinate axes can be found in Figure 1 which consists 
of an incompressible, electrically conducting non-
Newtonian and inelastic Casson fluid flow between two 
infinitely long parallel rigid plates through a porous 
medium of width 2h. The flow is due to a constant pressure 
gradient in the flow direction. A constant magnetic field 

0B  is applied along the transverse direction of the flow. 
The Cartesian coordinates are chosen such that the origin 
is in the middle of the channel, the x-axis is parallel to the 
flow direction, and the y-axis is directed vertically upward.
The governing equations of the flow of non-Newtonian 
Casson fluid are:

. 0q∇ = , (1)

( ) ( ).
.D

m

q qq p q J B
t

µρ µ τ
ε ε κ

∇ ∂ + = −∇ − + × + ∇ ∂ 

 



 



, ( 2 )    

whereas the velocity having components (u, v), B


 is the 
magnetic field, ρ is the fluid density, p is the pressure, t is 
the time, Dµ is the dynamic viscosity, mµ is the magnetic 
permeability, κ is the permeability, J



is the current 
density,τ is stress tensor and ε is the porosity of porous 
medium. 

The Lorentz force J B×
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whereσ is the electrical conductivity of the fluid.
The stress tensorτ for an isotropic and incompressible 

flow of a Casson fluid is
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components of the rate of deformation, ij ije eπ = is the 
product of deformation tensor with itself and cπ is the 
critical value of π based on the non-Newtonian model, eµ
is the Brinkman viscosity, yθ is the yield stress,

Then we get,
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Equation 4 represents the non-Newtonian fluid 
with solid-like behavior with high yield stress. The flow 
of Casson fluid is obtained if the applied stress is more 
than that of critical value  But we are considering the 
non-Newtonian Casson fluid behavior to study the linear 
stability of magnetohydrodynamic fluid flow through a 
porous medium with a uniform transverse magnetic field.

The modified version of the above empirical relation 
is employed by Fusi29, M Nawaz30.

The stress tensor components are 

12 1x x e
u
x

τ µ
η

  ∂= +  ∂ 
, 12 1y y e

v
y

τ µ
η

  ∂= +  ∂ 
,

Figure 1. Schematic representation of problem considered.
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The stress tensor becomes,  
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with 
2e c

y

µ π
η

θ
=  being the Casson parameter.

3.0 Basic Flow
The steady-state flow of Casson fluid is fully developed, 
unidirectional and is driven only by a constant pressure 
gradient that is [ ( ), 0, 0]b bq q u y== 

.

At a steady state, the stress tensor becomes
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Nondimensionalisation is carried out by using the 
non-dimensional quantities denoted through over bars,

0
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where 0U is average velocity, ρ is fluid density, h is the 
half channel length.

Then by neglecting the upper bars we get,
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By using centre-line velocity, we get 
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Which is the expression for the velocity distribution 
of PPF of a considered Casson fluid.
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Limiting Cases: -
The solution  for the fluids with large viscosity:  
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Which is corresponding to the results of Nield31, Hill32 
and Shankar10.

The solution for clear fluid is,
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Which corresponds to the results of Takashima34 and 
also for
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Figure 2a represents the plots of steady-state velocity 

profiles ( )bu y by taking fixed Casson parameter 
η = 1 for different values of Hartmann number Ha
without porous media. It clearly presents the effects of the 
Hartmann number on the basic flow. The velocity curves 
start increasing from 1y = − and reaches maximum at the 
centre line of the channel at y = 0 and decrease from there 
and reach zero at 1y = . The velocity starts exponentially 

Figure 2. Basic velocity profile η for fixed and Ha varying for (a) σp=0, (b) σp=10.

Figure 3. Basic velocity profile for fixed Ha and varying η for (a) σp=0, (b) σp=10.
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from 1y = − with a simultaneous increase in the Hartmann 

number and then takes parabolic form by the way they 
reach the end at 1y = . The velocity increases significantly 

with an increase in the Hartmann number and becomes 
slower towards the end. Thereby, one can see a region of 
slow fluid flow for larger values of the Hartmann number 
relatively one can see a region of fast fluid flow with 
smaller values of the Hartmann number. The results are 
comparable with the results of Takashima33 and Lock34. 
With a highly porous medium Figure 2b, one has not seen 
great variation in velocity but there is sight similar trend.

Figure 3a represents the plots of steady-state velocity 
profiles by ub (y) by taking constant Hartmann number  
Ha for different values of the Casson parameter η. In 
the absence of a porous medium, the velocity curves are 
starting increases from y = -1 and reaches a maximum 
at the centre line of the channel at y = 0 and decreases 
from there and reaches zero at y = 1  with a parabolic 
shape, a small variation in velocity is observed while the 
Casson parameter increased. But very significant change 
in velocity is observed with high porous parameter 
(σp=10) That is by an increase of Casson parameter ηand, 
the velocity profile takes parabolic form from y = -1 to  
y = 1 with slower fluid flow near boundaries in Figure 3b. 
Clearly increase in porous parameters adversely affects 
the velocity of the fluid near boundaries.

4.0 Stability Analysis
Linear stability analysis of the electrically conducting 
Casson fluid is carried out by taking infinitesimal 
disturbances to the basic state variables as,

( , , , ) ( ( ),0, , ) ( , , , )( , , )bu v p u y p u v p x y tτ τ τ= + . ( 1 7 ) 

where perturbation of stress tensor is taken as,
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(18)

Equation (1) and Equation (2) can be linearized using 
the steady-state solution (8). The arbitrary disturbance 
quantities are denoted by an upper bar.

By using the Fourier mode expansion 

( )( , , , )( , , ) ( , , , )( ) i x tu v p x y t u v p y e α ωτ τ −= , ( 1 9 ) 

where α is the wavenumber in the x-direction, ω is the 
frequency and c is complex wave speed.

r ic c icω
α

= = +
    

(20)

 As α is positive (real quantity), the disturbances are 
amplified or damped depending on the sign of the 
imaginary part of c which is positive or negative. The 
disturbance is neutrally stable if the imaginary part of c
is zero.

Then finally we obtain the stability equations as
0Dv i uα+ = ,    (21)

22
2 2( ( ) ) ( ) ( ) p

b b
S Hai u y c u v Du y i p D u u u
Re Re Re

σ
α α α− + = − + − − −

,      (22)
2

2 2( ( ) ) ( ) p
b

Si u y c v Dp D v v
Re Re

σ
α α− = − + − − , (23) 

and the boundary conditions are

( ) ( )1 0 1u v± = = ± .    (24)



D. L. Shivaraj Kumar, M. S. Basavaraj and N. Kavitha

1417Vol 71 (10) | October 2023 | http://www.informaticsjournals.com/index.php/jmmf  Journal of Mines, Metals and Fuels

5.0 Normal Modes
A Normal mode analysis is carried out by introducing 
stream functions that satisfy the continuity Equation (1)
 

,u
y

∂Ψ=
∂

     v
x

∂Ψ= −
∂

   where   ( )( , , ) ( ) i x tx y t Y y e α ω−Ψ =

Equations (21), (22), (23), and (24) are reduced into 
the fourth-order Orr Sommerfeld type equation. 
The wavenumber α is real so that the solution becomes 
bounded and r ic c c= +  is complex wave speed. Therefore, 
the given system is neutrally stable if 0ic = and unstable if 

0ic > , asymptotically stable 0ic < . 

( )2 2 2 2 2 2 2 22 22 22 1( ) ( ) ( )( ) ( ) ( )p b bS D Y Ha D Y u y D Y D u y c D YD
i Re

α σ α α α
α
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i Re

α σ α α α
α

− − Υ − − − − + Υ = − −  (25) 

Which is the required fourth-order disturbance equation.
The no-slip boundary conditions are,

0 1Y at y= = ± .

6.0 Energy Analysis
An analytical energy method has been used to obtain the 
suitable sufficient condition for the stability of PPF of 
Casson fluid with arbitrary disturbances as follows.
Let Y  be the conjugate of Y , then integrate the resulting 
equation over the flow domain y by taking the product 
with its conjugate Y in each term (Drazin et al.1) then we 
get,
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Equating real parts on both sides, we get
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If the Real part of rΥ = Υ  an Imaginary part of iΥ = Υ  
then,
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Let G denotes the LHS of (22), 
By equating imaginary parts on both sides, we obtain the 
below expression which denotes the growth rate 
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By equating real parts on both sides, we obtain the below 
expression which denotes the phase velocity, (31)

1 2 2 2
1 12 2 2

1

1 (( ) ( ) ( ) | | ( ( ) ) | | )
(| | | | )

"r r r i i b b bc u y u y u y dy
dy

α
α −

−

= Υ Υ ′ + Υ Υ ′ ′ + Υ′ + + Υ
Υ′ + Υ

∫
∫

 

1 2 2 2
1 12 2 2

1

1 (( ) ( ) ( ) | | ( ( ) ) | | )
(| | | | )

"r r r i i b b bc u y u y u y dy
dy

α
α −

−

= Υ Υ ′ + Υ Υ ′ ′ + Υ′ + + Υ
Υ′ + Υ

∫
∫

  (32)

Further,
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− − −
Υ Υ ′ − Υ Υ ′ ′ = ΥΥ′ − ΥΥ′ ′ ≤ Υ Υ′ ′∫ ∫ ∫  (33)

1 1 12 2

1 1 1 1 1
| || || ( ) | | | | | (max | ( ) |)b by

u y dy dy dy u y
− − − − ≤ ≤

Υ Υ′ ′ ≤ Υ Υ′ ′∫ ∫ ∫   

(Schwartz’s inequality)    (34)
then the growth rate for the upper bound is
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 1 2 2
1 1 1 12 2 2

1

1 | | | | (max | ( ) |)
(| | | | )

i by

Gc dy u y
Redy αα − − ≤ ≤

−

= Υ Υ′ ′ −
Υ′ + Υ

∫
∫

      (35)
We get the sufficient expression on Re  for stability as

1 12 2 2 2 2

1 11 1
| | | | ( max | ( ) |) (| | | | )by

GRe
dy u y dyα α

− −− ≤ ≤

<
Υ Υ′ ′ Υ′ + Υ∫ ∫

 

      (36) 
Equations (27) and (3) give the integral expressions for 

both ic  and Re which show the flow is stable at all values 
of parameters This is in contradiction to the experimental 
observations done by many researchers therefore, It is 
important to solve the stability equations (21) to (24) of 
the present system for more accurate values of the 
wavenumber α and Reynolds number Re .

7.0 Method of Solution
The numerical solution to the resulting fourth-order 
eigenvalue problem can be obtained using the Spectral 
methods (or transform methods) by taking Chebyshev 
polynomials as a base.

The interpolating polynomials for calculating the 
non-periodic functions at Chebyshev points are given by

( )/  jy cos j Nπ=  for j = 0,1,2…. N.

The Chebyshev points are having irregular distribution 
and are clustered near boundaries at y = ±1. The 
Chebyshev polynomial, ( )kT y , where k represents the 
degree of the polynomial is used to approximate its 
function and its derivatives above Chebyshev points.

The kth degree Chebyshev polynomial is defined as,

1( ) cos( cos ) cos( )kT y k y kθ−= =   (37)
Then,  

0 ( ) 1T y = , 1( )T y y= ,   2
2 ( ) 2 1T y y= − ,   3

3 ( ) 4 3T y y y= −  

and so, on up to

1 1( ) 2 ( ) ( ) 1k k kT y yT y T y k+ −= − ≥  (38)

 Which are having N number of zeros in the interval 
[-1,1]. Then,

( )( 1/ 2 ) , 1, 2, ... ,/         jy cos j N j Nπ= − =

By using the above relations and also

 
0

( ) ( )
N

j k k j
k

u y a T y
=

= ∑

where ka  be the coefficient of  kth Chebyshev 
polynomial given by

 
0

2 1 ( ) , 0,1, 2,........
N

k k j j
jk j

a T y u k N
Nc c=

= =∑  

with 
2 0,
1j

if j N
c

otherwise
= 

=  
 

 i.e.,  ˆa Tu=  

Similarly, to obtain derivatives 
0

' ( ) ( )
N

j k k j
k

u y b T y
=

= ∑  

i.e., 'u Tb=  then stability equations are written into the 
form of the Chebyshev polynomials.

The matrix T and T̂ are Chebyshev polynomials, then 
(N+1) × (N+1) be the Chebyshev collocation differential 
matrix, i.e., jks  given by

2 2

00
2 1 2 1,

6 6NN
N Ns s+ += = −

2 , 1, 2,3,.........., ( 1)
2(1 )

j
ij

j

y
s j N

y
−

= = −
−

( 1)
, , , 0,1, 2,........,

( )

i k
j

jk
k j k

c
s j k j k N

c y y

+−
= ≠ =

−

By following the above steps, the generalized 
eigenvalue problem has been obtained. By using the QZ 
algorithm (Moler and Steward35) the eigenvalue problem 
can be solved by using suitable environmental tools.

The higher-order derivatives can be easily obtained by 
using their corresponding powers i.e., 

2 3 4" , "' , ""u D u u D u u D u= = = . 

8.0 Results and Discussion
By solving the generalized eigenvalue problem, the 
values of various parameters involved in the problem are 
calculated using the QZ algorithm. The marginal stability 
curves are plotted for a deeper understanding of the PPF 
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of a Casson fluid with a transverse magnetic field through 
porous media.

The results obtained in Table 1 are found to be accurate 
with the results obtained by Takashima33. By increasing 
the Hartmann number value, the method converged 
slowly in a non-porous case with the Casson parameter
η → ∞ . This clearly shows that convergence becomes 
slower as Ha increases.

The effect of the Casson parameterη on critical values 
of the triplets ( cRe , cα , cc ) are obtained with a uniform 
transverse magnetic field ( 1Ha = ) in a non-porous media 
( 0pσ = ) in Table 2 and the results are accurate with the 
results of Kudenatti et al.26. By increasing the value of the 
Casson parameter, the critical Reynolds number Re , the 
critical wavenumber cα and the critical wave speed cc

found to decrease gradually. It is clear that from Table 2 
the growth of the disturbances in Casson fluid is found to 
be increasing in the presence of a magnetic field compared 
to the corresponding ordinary Newtonian fluid. 

By using the Chebyshev collocation method for linear 
stability of a PPF of a Casson fluid, the Neutral stability 
curves for various values have been plotted in ( Re -α ) 
plane.

Figure 4a represents the neutral stability curves for 
various values of Hartmann number Ha with Casson 
parameterη → ∞  in ( Re -α ) plane. Each marginal 
stability curve is having an upper concave shape. The 
region of stable mode seems to be increasing by the 
simultaneous increase of critical Reynolds number cRe
but the corresponding critical wavenumber cα shifting 
towards left in each curve. A higher range of stability can 
be achieved with an increase of Ha . That is the onset of 

Table 1. Critical values of the triplets ( cRe , cα , cc ) for various values of Ha when Casson parameterη → ∞
and 0pσ = .

Takashima33 Present study

N Ha
cRe cα cc cRe cα cc

30 0.0 5772.2218 1.02054 0.264000 5772.2256 1.02054 0.262000

30 0.5 6706.0911 1.00573 0.255883 6706.0111 1.00573 0.245883

35 1.0 10016.262 0.97192 0.235519 10016.264 0.97192 0.225519

40 2.0 28603.639 0.92777 0.192133 28603.662 0.92277 0.192133

45 3.0 65155.210 0.95824 0.169030 65155.293 0.95824 0.165030

55 4.0 112394.81 1.03545 0.159826 112394.81 1.03545 0.159826

60 5.0 164089.99 1.13424 0.156427 164089.94 1.13424 0.156321

65 6.03 219473.30 1.24715 0.155209 219473.35 1.24715 0.155200

75 7.64 308291.01 1.43718 0.154761 308291.89 1.43018 0.154650

85 10.0 439818.16 1.73914 0.154789 439818.23 1.73814 0.154773

90 11.29 510959.88 1.91502 0.154844 518959.32 1.91502 0.154840

100 15.0 708962.18 2.45660 0.154957 708962.43 2.45660 0.154949

120 20.0 961767.17 3.23764 0.155011 968767.21 3.23764 0.155012

140 30.0 1449060.2 4.84609 0.155028 1449060.0 4.84509 0.155028

180 50.0 2415550.1 8.07657 0.155029 2415550.2 8.02657 0.155029

210 70.0 3381771.1 11.3071 0.155029 3381541.1 11.3071 0.155029

250 100.0 4831101.5 16.1531 0.155029 4831323.5 16.2431 0.155029

360 200.0 9662203.3 32.3063 0.150029 9672321.3 32.3023 0.150029
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η
cα cRe cc

0.1 1.014285 67118.491945 0.260889

0.2 1.009814 38310.439037 0.258435

0.5 0.999996 21111.399265 0.253194

0.8 0.996041 16859.154274 0.250109

1.0 0.993115 15454.828316 0.248494

5.0 0.977857 11061.789468 0.239537

10 0.974642 10534.555496 0.237637

102 0.972722 10067.702366 0.235807

103 0.971421 10021.438171 0.235496

104 0.972142 10016.811887 0.235553

105 0.972142 10016.336031 0.235551

Table 2. Critical values of the triplets ( cRe , cα , cc ) for 
various values of Casson parameterη  when a porous 
parameter 0pσ = (non-porous case) and 1Ha = .

magnetic field ( 1Ha = ) in ( Re -α ) plane. As a contrast 
to Figure 4a the critical value of the Reynolds number cRe  
decreases with an increase in the value of the Casson 
parameter in each curve. For each neutral stability curve, 
the stable mode tends to decrease as the highest stable 
region can be seen with 0.1η = . That is the onset of 
instability of MHD flow is preponed with the increase in 
the Casson parameter. 

For the various values of porous parameter pσ in the 
presence of uniform magnetic field ( 1Ha = ) with fixed 
Casson parameterη = 5 various critical values of the 
triplets ( cRe , cα , cc ) are obtained in Table 3. It is clearly 
shown that an increase in porous parameters gradually 
makes the system linearly stable by simultaneously 
increasing the critical Reynolds number which can be 
also visualized in Figure 5. Clearly, an increasing porous 
parameter dampens the infinitesimal disturbances and 
this is due to a decrease in the permeability of the porous 
media. That is, a clear characteristic of Casson fluid to 
delay the onset of instability can be seen with an increase 
in porous parameters. Thereby, both Hartmann number
Ha and porous parameter pσ will have the same effect on 
Casson fluid. But the porous parameter pσ  shows a 
slightly higher region of stabilization comparatively. 
Further increase in their values linearly stabilizes the 
system by postponing the onset of instability.

Figure 4. Neutral stability curves (a) varying Ha forη → ∞ (b) varyingη at 1Ha =

instability of magnetohydrodynamic flow is postponed 
with an increase in Hartmann number.

Figure 4b represents the marginal stability curves for 
various values Casson parameterη  in the presence of 
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Figure 5. Marginal stability curves in ( Re vsα ) plane for 
different values of pσ with 1Ha =  and 5.η =

Table 3. Critical values of the triplets ( Re , cα , cc ) for 
various values of porous parameter pσ

[Present study] 1Ha = , 5η =

pσ cα
cRe cc

0 0.9783 11999.766 0.231233

0.1 0.9774 12058.981 0.228596

0.2 0.9765 12234.569 0.227694

0.3 0.9759 12532.932 0.226741

0.4 0.9723 12958.821 0.225512

0.5 0.9612 13510.965 0.220454

9.0 Conclusions
The detailed linear stability analysis of Plane Poiseuille 
Flow (PPF) of a Casson fluid in the presence of a uniform 
transverse magnetic field through a porous medium has 
been extensively investigated. The characteristics of the 
basic flow are dependent on the porous parameter, and 
the velocity profiles reveal that porosity has an adverse 
effect on the fluid flow’s velocity near the boundaries. 
Furthermore, sufficiency conditions for the resulting 

eigenvalue problem are derived using the Energy method, 
from which the qualitative behavior of the system is 
ascertained, showing that the system remains stable 
under infinitesimal disturbances.

Utilizing the Chebyshev collocation method, it is 
determined that there are no unstable modes when the 
yield stress of the Casson fluid is significant. However, an 
area of unstable modes emerges with an increasing 
Casson parameter (as shown in Table 2). The critical value 
of the Reynolds number decreases with the simultaneous 
increase in the Casson parameter, resulting in an 
expanded unstable region. This early onset of instability is 
attributed to the loss of viscosity in the Casson fluid due 
to high deformation rates, which, in turn, leads to 
increased fluid velocity. The critical values of the triplets  
( cRe , cα , cc ) obtained exhibit high accuracy and align 
well with the results of previous researchers.

Additionally, the neutral stability curves (Figure 
4) indicate that an increase in the applied transverse 
magnetic field expands the stable region. This finding, 
however, contradicts the results observed with varying 
Casson parameters. On the other hand, increasing the 
porous parameter (Figure 5 and Table 3) consistently 
stabilizes the fluid flow, delaying the onset of instability by 
suppressing the growth rate of disturbances. Notably, both 
the Hartmann number and the porous parameter have 
similar effects on Casson fluid, but the porous parameter 
exhibits a slightly greater region of stabilization. The non-
Newtonian Casson fluid model with high yield stress 
consistently enhances the stability of the flow.

The results obtained have significant relevance and 
practical utility within the metals, mining, and fuels 
sectors.
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