
Abstract
The influence of magnetic interaction parameter and conductivity of the fluid on the stability against small perturbations on 
the streamlined base flow between two infinitely long parallel fixed plates is studied numerically. By normal mode analysis, 
the disturbance equations are reduced to Orr-Sommerfeld-type. Using the energy method, sufficient conditions for stability are 
derived by using the nature of the growth rate and sufficiently small values of the Reynold numbers. The disturbance equations 
are then solved using the Galerkin method corresponding to the base functions as Legendre-polynomials. Critical values for the 
Reynolds number, wave number, and speed of the wave are computed for various ranges of the magnetic interaction parameter   
and the magnetic Reynolds number . The curves of neutral stability are presented for different values of the nondimensional 
parameters that appeared in this study. The stability analysis is also discussed with the help of the plots of the rate of growth 
of disturbances for several values of the electrical conductivity and the magnetic interaction parameter. It is observed that 
both the fluid conductivity and the magnetic interaction parameter have direct control over fluctuations in the system. The 
results of this study are accurate and are comparable with the existing literature in the absence of a parallel magnetic field. 

*Author for correspondence

1.0  Introduction
In the recent times hydrodynamic and hydromagnetic 
stability analysis with some constraint is one of the 
very important area to do the research because of its 
vast applications in the field of engineering. One can 
find the applications in the field of active flow control 
and its impact on many real-world problems. Equally 
thrilling applications can also be found from petroleum 
engineering, industrial process control, and even in the 
field of biomedical engineering.

The analysis of the growth rate of magnetohydro-
dynamic shear flows is an important and classical type 

Journal of Mines, Metals and Fuels, 71(10): 1537-1544; 2023. DOI: 10.18311/jmmf/2023/35807

of problem in fluid mechanics, several authors1-5 studied 
extensively this topic. The stability analysis of the flow of 
MHD fluid between infinite parallel walls is investigated 
theoretically by Lock5. He took the problem of stability 
when a constant magnetic field is introduced normally to 
the parallel plates externally. Before solving the problem, 
he further simplified the resulting stability equation 
by considering Prandtl number is less for conducting 
liquids. He derived the relationship between the Ha and 
Rec , showed that  Rec becomes greater than106 when Ha 
is greater than 20. Later, Hains6 examined the similar 
type of problem to find the impact of an externally 
applied continual magnetic field strength on the onset 
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of instability of a conducting fluid flow between parallel 
walls. A similar type of problem considered by Lock was 
reconsidered by Potter and Kutchey7, they showed that 
by increasing the Prandtl number we can control the 
instability of the fluid.

Orszag8 calculated an exact solution for the Orr-
Sommerfeld eigenvalue problem by the Chebyshev 
collocation method. This solution is the benchmark 
for most research problems even today. The problem of 
Potter and Kutchey was reconsidered by Takashima9 with 
the appropriate boundary condition on both velocity 
and magnetic stream and examined the validity of 
Locks simplification. He determined accurately how the 
critical Reynolds number varies directly with reference 
to the Hartmann number. Basavaraj10-14 investigated the 
influence of the porosity of the porous media and uniform 
vertical magnetic field on the fluid using the energy 
method. A variety of models have been used to explain 
the Newtonian/non-Newtonian behaviour of fluids and 
their applications15-24. 

As per the authors knowledge, not much work 
has been carried out on the effect of a magnetic field 
in a perpendicular direction on the stability of the 
hydrodynamic horizontal shear flow. Using the linear 
stability analysis, the magnetohydrodynamic instability 
of the constant streamline flow corresponding to a 
parallel magnetic field is studied by Aruna, Basavaraj 
et al.25 studied the influence of temperature on the fluid 
flow for different viscosity for cellular convection of 
finite amplitude. Basavaraj et al.26 discussed the influence 
of the both permeability of the porous media and the 
magnetic field parallelly on the stability of the modified 
plane Poiseuille flow. Girinath Reddy et al.13 investigated 
the disturbances that occurred due to variable fluid 

characteristics on double-diffusive mixed convection for 
accelerating surface with chemical reaction. Basavaraj27 
inspected the problem of stability of parallel flow in a 
saturated porous medium when a magnetic field is applied 
parallel by the spectral Chebyshev method.

2.0 Mathematical Formulation
Present study includes flow between infinite two parallel 
nonconducting fixed plates z h=  and z h= −  which are at 
a distance 2h apart. The flow in this channel is electrically 
conducting. The rectangular coordinate system is 
considered with the origin O in the middle between the 
plates, and the flow along the x-axis and z-axis is vertical 
to the plates. A consistent magnetic field 0B  is externally 
applied along the fluid as shown in Figure 1.

The equations representing the electrically conducting 
flow between infinite, two non-conducting plates with a 
uniform magnetic field and with usual MHD 
approximations are given by adding the additional force 
term J B×





in the Navier-Stokes equation, where the 
current density and magnetic induction are given by J



and B


. This force term is considered when an applied 
electric field is absent, by ( )J q Bσ= ×

 

 , where σ  is the 
electrical conductivity and q  is the velocity of the fluid. 
Hence the equations representing the system in the non-
dimensional form are:

21
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V B B V B

t R
∂

+ ⋅∇ = ⋅∇ + ∇
∂



    

		  (1)   

( ) 21
( ) ,

m

V N
V V P B B V

t R Re
∂

+ ⋅∇ = −∇ + ⋅∇ + ∇
∂



    

	
(2)

 
. 0, . 0 .V B∇ = ∇ =
 

				    (3) 

Where V


- the velocity vector, B


- the magnetic field, 

04mR huπµ σ= - the magnetic Reynolds number, 

0 /Re u h ν= - Reynolds number, f = /ν µ ρ - kinematic 
viscosity, 2

0 0/N B h uσ ρ= - magnetic interaction 
parameter, ρ - density of the fluid, fµ - fluid viscosity, 0B
-reference magnetic field, 0u - reference velocity, 

( ) / 8P p B B πµ= + ⋅
 

-total pressure and h  is the half 
channel width, µ  is the magnetic permeability, σ  is the Figure 1.  Physical layout of the problem.
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electrical conductivity and t is the time. It is to be noted 
that here that the quantity 2 2

0 0/mA R B h u Nσ ρ= = is 
referred to as the magnetic interaction parameter, where 

2A  is the Alfven number, when this parameter is 
negligibly small, equation (2) is identical to the Orr-
Sommerfeld equation for ordinary Newtonian fluids.

2.1 Linear Stability Analysis
To study the linear stability of the system, the flow field 
variables are split into a basic state and small disturbances 
as

,V V v B B bb b= + = +
     

,				     (4)

Where

 0( , 0), ( , 0)

( , ), ( , )
b b

x z x z

V U B B

v v v b b b

= =

= =







 



			    (5)

Further the two-dimensional disturbances take the 
variable separable form

{ } ( )( , , ) , , ( ) ,i x ctv b P P z e α αφ ψ −′=




		   (6)

The assumed form of the disturbances implies a 
spatially periodic wave whereα is a wave number in 
dimensionless form, which is a positive real number (α
>0) in the x-direction. Where φ  the velocity stream 
function, ψ is the stream function related to magnetic 
field, 21U z= −  is the basic velocity, r ic c ic= +

 represents complex wave speed, phase velocity is given by 
rc  and ic corresponds to rate of change of growth. The 

flow is treated as linearly stable if 0,ic <  flow is linearly 
unstable if 0,ic >  and the flow is neutrally stable for 

0.ic =  the constant horizontal magnetic field ( 0B ) 
applied externally is assumed as one. The pressure term is 
eliminated from the governing equation (2) and using the 
procedure followed by Stuart1 yields the following 
disturbance equations.

 
( )( ) ( ) ( ) ( )22 2 2 2 2 2 2( ) ( ) 0
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						      (7)
( ) ( )2 2( ) 0

m

i
U z c D

R
φ ψ α ψ

α
− − − − = 	 (8)

 If the magnetic field is absent (i.e., 0N = ), equation 

(7) represents ordinary Orr-Somerfield equation. The 
homogeneous system of equations (7) and (8), and by 
considering velocity is zero at the boundaries given by,

0 at 1D zφ φ ψ= = = = ± ,			   (9)

Using equation (8) in equation (7) we have the 
following homogeneous equation
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2.2  Energy Analysis
The analytical energy method is employed to get the 
suitable conditions for sufficiency in terms of the growth 
rate and Reynolds number. Following Drazin and Ried 
(2004), the conditions are derived. For this multiply the 
entire homogeneous equation (10) by φ , the complex 
conjugate of φ , and by integrating the simplified equation 
with respect to z from -1 to 1, using the conditions (9), we 
have the following
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Separating both real part and imaginary part of 
equation (13) and equating to zero then, we get
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Equation (17) is known as energy equation for basic 
flow in the direction of propagation of disturbances in 
two-dimension. We write Equation (15) in the form,
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From above equation we have sufficient condition for 

stability is
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2.3 Numerical Solution to the Problem
The linear system of homogeneous differential equations 
(7) and (8) along with the boundary conditions (9) 
formulate the generalized eigenvalue problem. Solution 
of this generalized eigen value problem is carried out by 
Galerkin method with basis function as Legendre 
polynomials, ( )nP z . Accordingly, ( )zφ  and ( )zψ  are 
described with the Legendre polynomials as

0 0

( ) ( ), ( ) ( )
M M

n n n n
n n

z A z z B zφ χ ψ ζ
= =

= =∑ ∑  		  (21)

with the corresponding base polynomials ( )n zχ =
2 2(1 )z− ( )nP z , ( )n zζ = 2(1 )z− ( )nP z . Here the 

degree of the Legendre polynomial is represented n and, 
nA  & nB are being constant coefficients. Where ( )zψ  

and ( )zφ  satisfies the boundary conditions. Equations 
(7) and (8) using the Equation (21) and the net error is 
necessary to be perpendicular to mχ (z) and mζ (z) meant 
for m = 0, 1, 2,....... M, this implies
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Equations (22) and (23) reduces to following system 
of linear equations:

1 2X c XΩ = Ω 				     (24)

where 1Ω  and 2Ω  are the 2(N+1)th order complex 
matrices, the eigenvalue and corresponding eigenvectors 
in discrete form are represented by c  and X.  When both 

mR  and N are fixed, the values of c  gives a non-trivial 
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Figure 2.  (a and b) Marginal stability curves.
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(b)

Rm=0.05

N =0.1,0.5, 1, 
1.5, 2, 2.5 & 3 

α
α

Re

M

N=0.2,   Rm =0.1, Re =8000, & α=1 N=0.6, Rm = 0.3, Re =30000 & α=0.8

r ic c ic= + r ic c ic= +

5 0.33768358258214176+0.0067332251723915i 0.817483614433903 -0.004259465778156 i

1 0 0.2425018654901316 +0.0130781122069553 i 0.184067718123462+0.011379812679697 i

2 0 0.2385557709405035 +0.0059548912540639 i 0.166632513656469+0.002764796155647 i

3 0 0.2375828537277001+0.0032274953460328 i 0.170165997107799 +0.000437130388416 i

4 0 0.2374735460747337+0.0031638101715215 i 0.1696087730670 +0.00032858773455456 i

5 0 0.2374734716391618+0.0031626179970966 i 0.169623734717128 +0.000358684872481 i

6 0 0.2374734758663112+0.0031626196396392 i 0.16962473086253144+0.00035842938683i

7 0 0.2374734766220434+0.0031626194474267 i 0.169624782389621+0.000358409668283 i

8 0 0.237473477730665+0.00316261850084343 i 0.16962480943125 +0.0003584030998372 i

9 0 0.237473425340541+0.00316262061212312 i 0.16962482796911+0.0003583986622785 i

Table 1. Eigenvalue convergence
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solution of Equation (27) which is obtained by QZ 
algorithm. The critical parameter values of cc , cRe and 

cα  are calculated for many values of  mR .

3.0 Result and Analysis
The primary objective of present discussion is to know the 
effect of magnetic interaction parameter on the behavior 
of the fluid flow when horizontal magnetic field is 
applied. Using the energy method, we derived the criteria 
to show that the sufficient condition on the stability of the 
initial flow against small disturbances in terms of change 

of growth rate as well as the Reynolds number. Using 
Galerkin method, modified Orr-Sommerfeld equation is 
numerically solved using Legendre’s based polynomials.

The parameters under the study are the magnetic 
Reynolds number Rm, Magnetic interaction parameter N 
and the Reynolds number Re. The numerical method is 
verified  for different set of numerical of the parameters 
by varying order of Chebyshev polynomial M and 
convergence of corresponding eigen values is displayed 
in Table 1. It is clear from Table 1, that eigen values are 
compatible and till eight digits accuracy is established.

Figure 2, displays curves of stability for different values 
of magnetic Reynolds numberRm, magnetic interaction 
parameter N. The area below individual neutral curve 
corresponds to the stable region and the area above each 
neutral curve corresponds to unstable region. Figure 
2(a) presents the neutral curves for different values of 
the magnetic Reynolds number Rm . Again, from this 
figure one can observe that the critical wave number  αcis 
weakly a decreasing function of Rm, whereas the critical 
Reynolds number is directly proportional to Rm. Hence 
increasing the values of Rm leads to resist the flow and 
hence the system becomes stable. 

 The reason is, when the values of the Rm is increased, 
the Reynolds stresses makes the system becomes stable.  
Figure 2(b) shows effect of N on the neutral stability 
and from this graph it is clear that the region of stability 
constantly increases when the parameter N increased 
considerably. As increasing conductivity parameter, 
decreases the instability region and hence makes the 
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Figure 3.  Variation of rate of growth of the disturbances 
( ) versus the wave number (α ) for different values of 
the Reynolds number for fixed magnetic Reynolds 
number ( mR ) and magnetic interaction parameter (N).

Figure 4.  Variation of Growth rate versus wave number for different values of the magnetic interaction parameter when 
10 and 50000.mR Re= =

0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

ci

α

Re =50000, Rm=10

N=0.2, 1, 1.5, 2, 2.5 & 3 

 

(a)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-0.0275

-0.0220

-0.0165

-0.0110

-0.0055

0.0000

0.0055

0.0110

Re = 15000, N=0.2

ci

α

Rm=0.5, 5,  12, 18, 25 & 32 

(b)



M. S. Basavaraj, M. Girinath Reddy, N. Kavitha and T. Shobha

1543Vol 71 (10) | October 2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels

system more stable. The Maxwell’s stress present in the 
system is responsible to make the system stable.

The effect of N and Rm, on the stability of the flow in 
terms of growth rate is presented in Figure 3 for different 
values of the Reynolds number Re = 8000, 10000, 12000 and 
14000. From these figures it is evident that by upgrading 
the values of the N and Rm, weakness the growth of the 
small perturbations on the basic parallel flow. The inertial 
force is insignificant in the system suppress the growth of 
unstable modes and this can be observed.  

The changes in the growth rate of disturbances versus 
the wave number for various values of the magnetic 
interaction parameter and the conductivity of the fluid 
is shown from Figure 4(a)-(b). From Figure 4(a),it is 
observed that, Ci is inversely proportional to magnetic 
interaction parameter, N, for fixed values of Re = 50000 
and Rm = 10. This figure clearly visualizes that magnetic 
field strength dampens the rate of growth of small 
disturbances and this leads to more stable system. Form 
Figure 4(b), one can see that Ci is decreasing function 
of the conductivity parameter, m R , for fixed values of 
Re = 15000 and N = 0.2 . ItIt is clear that growth rate of 
disturbances is decreased when the conductivity of the 
fluid parameter increased from 0.5, 12, 18, 25 and 32. 
This is due to the reason that the Maxwell stress increases 
when the magnetic Reynolds number increases gradually.

4.0 Conclusion
The behavior of an electrically conducting fluid flow 
between parallel infinite non-conducting two plates is 
examined with constant longitudinal magnetic field for 
two dimensional disturbances. The main intention of 
the problem is to find the role of magnetic interaction 
parameter and the conductivity of the fluid on the stability 
of the MHD fluid. From the investigations we found 
that critical Reynolds number is dependent on both the 
parameters considered in the problem. Using the energy 
method, the stability criterions in terms of the growth 
rate as well as Reynolds umber is derived. From the study 
we observed, the critical Reynolds number is directly 
proportional to both parameters, magnetic interaction 
number N and magnetic Reynolds number Rm. Magnetic 
interaction parameter has a major role on the growth 
rate of the fluid flow, it has stabilizing effect on the flow. 

Re  is an increasing function of the magnetic interaction 
parameter N. The critical wave speed is inversely 
proportional to the magnetic interaction parameter and 
critical wave number is also inversely proportional to 
magnetic interaction parameter N. The rate of change of 
disturbances becomes damped when magnetic interaction 
parameter is increased appropriately.
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