
Abstract
The viscosity of fuel oil is significantly influenced by temperature, with higher temperatures leading to lower viscosity. To 
ensure optimal combustion, it's crucial to maintain the fuel's viscosity within a specific range. With regard to variable, space-
dependent and uniform heat sources, the impact of variable viscosity on the stability of Buoyancy Rayleigh-Bénard convection 
is demonstrated. The impact of non-inertial acceleration on natural convection is also studied in the problem. The Fourier 
series representation of stream function, temperature distribution describes how to derive an analytical expression for the 
thermal Rayleigh number. Here we noticed that the heat source parameter, the viscosity parameter, and the Taylor number 
effect the stability of the fluid system. Also, it is demonstrated here the impact of rotational strength accompanied with the 
stabilized system, where as an increase in the internal Rayleigh number and thermorheological parameter is to destabilize the 
same. It is also observed that, it is possible to control convection by proper tuning these parameters. A comparative study of 
external Rayleigh number and stability analysis for the onset of instability is presented in the problem. Some of the important 
new results have been revealed in the context of heat sources 

*Author for correspondence

1.0 Introduction
Fuel viscosity plays a pivotal role in shaping various 
aspects of fuel injection, spray formation, and 
combustion in Compression Ignition (CI) engines. 
In contemporary diesel engine injector designs, such 
as rail injection systems, which operate at extremely 
high pressures exceeding 100 MPa, the viscosity of fuel 
surpasses atmospheric values by a significant margin. 
Precisely estimating the viscosity of biodiesel (BD) based 
on its composition shows great potential for optimizing 
biodiesel production processes, particularly when 
blending different raw materials and refined products. 
Natural convection issues associated with buoyancy, heat 
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source/sink, thermorheological effects, and Coriolis forces 
have been explored by numerous researchers. Over recent 
decades, the quest for stabilizing systems or controlling 
heat transfer has been a compelling challenge due to 
their vast applications in geophysics and astrophysics. 
The classic Benard convection driven by buoyancy 
has been extensively studied and well-documented in 
various authoritative works, including those authored 
by Chandrasekhar1, Nakagawa2, Platten and Legros3, 
and Drazin and Reid4. The external mechanisms that 
suppress the onset of convection is rotation, the strength 
of rotational force is represented by a non-dimensional 
Taylor number. Vadasz5 consider the same problem and 
made a stability analysis using linear theory under the 
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influence of Coriolis effect in a porous layer and found 
that rotation is to have a stabilizing effect. Besides this 
examination, the study made by Ecke et al.6 also concludes 
the same. Kiran and Bhadauria7 made a weakly non-
linear stability analysis of Buoyancy convection under 
the influence rotation, this study explains how Taylor 
number can be tuned in order to suppress the onset of 
convection and heat transfer (Kapil et al.8 and Venugopal 
and Arnab Kumar9). Recently, King et al.10 demonstrated 
some important results on scaling behavior of Rayleigh-
Bénard convection with rotation. The material offers its 
heat source in many engineering and science problems, 
resulting in enhanced heat transfer. Such a situation can 
even occur in various fields, such as radioactive decay, 
chemical reactions, and nuclear reactions. It can even 
occur in some celestial bodies that are kept warm and 
active by nuclear reactions and radioactivity. Because of 
heat source/sink, there would be a temperature gradient 
between the center of Earth and surface that helps 
maintain convective heat flux, thus transferring heat 
energy toward the Earth’s surface. Therefore, the internal 
heat source/sink role is very important for various 
applications such as radioactive materials, geophysics, 
astrophysics, etc. However, some relevant studies 
have investigated the effects of internal heat source on 
convective flow in a fluidized layer. McKenzie et al.12 
studied natural convection due to Buoyancy in the Earth’s 
mantle taking large value of Prandtl number explains 
geophysical information and convection in a Boussinesq 
fluid. (Tveitereid and Palm13, Clever14, Riahi et al.15,16, 
Siddheshwar and Titus17 and Srivastava et al.18). 

 Viscosity is one important fluid property represents 
ratio between shear stress and strain. Viscosity is 
temperature dependent in many situations, even at room 
temperature. It is one of the fluid properties that indicate 
the convection phenomenon. The impact of temperature-
structured variable viscosity in an exponential model 
using truncated Taylor series turned into studied via 
Torrance and Turcotte19. Straughan20 demonstrated 
the consequences of temperature-dependent viscosity 
on convection and located that thermorheological 
parameters affect the onset of convection and reason 
destabilization of the system. Siddheshwar et al.21, Wu and 
Libchaber22 and Shateyi and Motsa23 have proven that the 
electrically conductive fluid in the presence of suspended 

solids is greater strong than the conventional electrically 
conductive fluid without suspended solids while the 
underlying fluid layer is heated, where the fundamental 
wave quantity is insensitive to the suspension parameters 
however more sensitive to the Chandrasekhar number. It 
is widely known that the viscosity of the Earth’s mantle 
is strongly temperature structured (Giannandrea and 
Christensen24, Booker25), which absolutely affects the 
convection sample. consequently, it is critical to do not 
forget this rheology in a laboratory or numerical studies. 

 Recently, the minimal representation of Fourier series 
expansion finds useful application in convection problems 
(Ramachandramurthy and Aruna27,28). Accordingly, 
this problem deals with the linear stability analysis of 
natural convection (Buoyancy-driven convection) in the 
temperature-dependent variable viscosity Newtonian 
liquid with uniform heat sources. We select the Fourier 
cosine series method to model the basic viscosity and 
temperature distribution. This approach is implemented 
to find the analytical expression for the thermal Rayleigh 
range as a function of internal Rayleigh number, 
thermorheological parameter, and Taylor number. The 
Galerkin method is utilized to analyze the boundary 
value problem. We illustrate comparisons of integrity and 
range of occurrence of thermal convection at the onset of 
the phenomenon as a function of space-dependent heat 
source data. 

2.0  Mathematical Formulation for 
Space-dependent Heat Source

Consider a temperature-sensitive Newtonian liquid 
between two infinite parallel horizontally extended planes 
of known depth d  between = 0y  and y d=  and finite 
temperature gradients between = 0y  and =y d . The 
bottom and top sides are kept at fixed temperatures, and 
the bottom wall is rigid and stress-free with the condition 
that the surface = 0y  is provided with a sloped in 
temperature. Considering only small convective 
movements (Lorentzian), we assume that the Oberbeck-
Boussinesq approximation follows in which the boundary 
is stress-free and isothermal. The dynamic viscosity and 
density varies along the y -axis, and its heat source is 
assumed to vary along the y -axis. The governing 
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equations for the present problems with the Coriolis force 
are given by 
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is linear uniform basic temperature gradient. One can 
obtain this expression by solving energy equation in the 
absence of time and the velocity components 

0=== wvu . We restrict our study to two-dimensional 

flow, therefore it is necessary to introduce the stream 
functions the flow as follows:
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 Eliminating the pressure from these Eqn. (2.2) 
using the classical procedure of taking curl twice, the 
momentum and energy equations takes the following 
form:
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 Now non-dimensionalize the Eqs. (9)-(11) using 
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and we get the following non-dimensional momentum, 
energy and vorticity equations
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Figure 1. Schematic of Flow configuration.

In order to perform the linear stability analysis, we 
consider the following perturbations:
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where the primes represents perturbation quantities. 
Prior to perturbation the fluid state is at rest and it is in 
conduction state, the basic state quantities )(),( yyT

bfb µ  
and )(ybρ  have their solutions in the form 
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 where 
222= dTa

ν
 Ω
 
 

 is the Taylor number due to 

rotation of the fluid,
 

χ
γ=Pr   is the Prandtl number,  

 

T
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= is the internal Rayleigh number, 
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∆  is the external thermal Rayleigh number 

which is the eigenvalue of the problem. The boundary 
conditions at 0,1=Y  for solving the Eqs.(2.13), (2.14) 

and (2.15) are displayed below 
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3.0 Linear Stability Analysis 
To perform linear theory, we consider the linearized 
version of Eqs. (13), (14) and (15) together with the 
boundary conditions (2.16). The solutions are assumed to 
be a periodic wave of the following form: (As discussed in 
Aruna et al.30-32).
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Substitute these Fourier modes into Eqs. (13), (14) and 
(15) (linearized version) and using standard 
orthogonalization procedure, a set of a homogeneous 
linear system of equations of three unknowns is obtained. 
In the event of obtaining a non-trivial solution of the 
system, we get the following analytical expression for the 
eigenvalue ER : 
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To derive the above expression we have applied 
standard orthogonal procedure. The scaled wave number 

cα  satisfies 
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4.0 Results and Analysis 
The heat source/sink, variable viscosity, and rotation 
impact on stability of Rayleigh-Bénard convection is 
demonstrated for space-dependent, variable, uniform 
heat sources. The effect of heat source is represented by 
the internal Rayleigh number (RI), rotation as Taylor 
number (Ta), and the temperature-dependent viscosity 
as thermorheological parameter (V). The thermal 
Rayleigh number  is the eigenvalue of problem. Some of 
the important highlights of linear stability theory are as 
follows: 

1. Derivation of useful Fourier cosine series for base 
viscosity and temperature gradient. 

2. Finding an analytical expression for the thermal 
Rayleigh number for all types of heat sources, which is 
necessary for working with stability theory. 

3. Tabulation of variations of critical Rayleigh number 
and wavenumber with respect to the relevant parameter. 

Here we have a tendency to shall study the impact 
of Space dependent heat supply on the linear stability 
of Rayleigh Bénard convection in temperature-sensitive 
Newtonian liquids with the heat source/sink and therefore 
the force. within the momentum equation, the term Qv  
indicates the warmth strength variation on the y-axis. To 
know the results arrived within the drawback higher we 
have a tendency to analyze the essential state temperature 
distribution, that throws lightweight on the discovered 
result of the heat supply (sink) on the steadiness. The 
scaled dimensionless temperature distribution for a space 
dependent heat supply is given by
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Clearly, the basic temperature distribution is linear 
and varies with respect to Y- axis and does not depend on 
any parameters.

Figure 2 shows the effects of  RI, Ta and  V RI on vital 
Rayleigh and waveband. It is revealed that increasing the 
Taylor range lowers the critical Rayleigh number and 

 RI = 0
 V= 0  V = 0.5

 
EcR

  
cα

  
EcR

  
cα

 

 Ta = 0  719.46  0.7184  576.86  0.7185 

 Ta = 10  740.189  0.7340  602.423  0.7422 

 Ta = 100  897.925  0.8373  785.29  0.8828 

RI = 0

 Ta = 0  657.51  0.7071  518.50  0.7085 

 Ta = 10  677.071  0.7226  543.053  0.7330 

 Ta = 100  826.282  0.8255  718.245  0.8765 

RI = 0  

 Ta = 0  597.309  0.6944  461.684  0.6975 

 Ta = 10  615.732  0.7099  485.319  0.7229 

 Ta = 100  756.517  0.8124  653.302  0.8706 

Table 1. Table of critical Rayleigh and wave number for variable heat source 

Figure 2. Plots Rayleigh number RE  versus wave number α in the presence of space-dependent heat source
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wavenumbers (RE and αC). Its action is to stabilize the 
device and delay the onset of convection. As  V increases, 
the important Rayleigh range and wave diversity 
decrease. This has the effect of destabilizing the device 
and promoting the onset of convection. When dealing 
with internal Rayleigh manifolds, the lower values of RI 
talk about heat sinking or absorption. From these plots 
we can see that the increase in large Rayleigh manifolds 
and wavebands is followed by an increase in the internal 
Rayleigh manifold RI  and vice versa. Therefore, the 
effect of growing a large internal Rayleigh number is to 
destabilize the device, thereby promoting the initiation of 
convection and vice versa.

5.0  Conclusion
The paper reveals following important results 

1. To conduct linear theory analysis, a truncated 
Fourier series representation of the basic state of 
temperature distribution and viscosity change in fuels is 
satisfactory.

2. The impact of increasing the internal Rayleigh 
number is to enhance the onset of convection, thereby 
accelerating the model all systems to be unstable system

3. The impact of increasing the variable viscosity 
parameter is to enhance the onset of convection within 
fuel, thereby accelerating the model all systems to be 
unstable system

4. The impact of increasing the strength of rotation is 
to delay the beginning of convection and it stabilizes the 
system for all type of fuels

5. It is possible to control the onset of convection by 
adjusting the parameters RI, V and Ta appropriately. 
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