
Abstract
Exploring the behavior of viscoelastic dielectric liquids on an inclined stretching sheet involves a comprehensive mathematical 
analysis. Employing a Runge-Kutta-based shooting strategy, this study delves into the system's non-linear Ordinary Differential 
Equations (ODEs). The research investigates how physical parameters like the Prandtl number, dielectric interaction 
parameter, viscoelastic parameter, Grashof number, and angle of inclination influence both velocity and temperature. Through 
graphical representations, the study sheds light on the impact of these factors and compares its findings with existing data. 
This intriguing combination of dielectric liquid behaviour under varying inclinations holds significant potential applications 
in Mines, Materials, and Fuels.

*Author for correspondence

1.0 Introduction
Non-Newtonian fluids play a pivotal role across 
diverse industries like nuclear reactors, metallurgy, 
textile manufacturing, geothermal engineering, space 
technology, and crystal growth. Their boundary layer flow 
holds immense significance due to their widespread use in 
various sectors. From nuclear reactors and metallurgical 
processes to fiber spinning, metal casting, space 
technology, and crystal development, non-Newtonian 
fluids find multifaceted applications. The exploration 
of dielectric liquid flow over an inclined stretching 
viscoelastic sheet opens doors to valuable applications 
in science, technology, industrial equipment, electrical 
devices, and the automotive sector, among others. Non-
Newtonian fluids models are used, among other things, 
in the fabrication of plastics, polymers, optical fibers, 
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hot rolling, drilling mud, cooling metallic plates, paper 
manufacturing, metal spinning, etc. which comes under 
the field of materials. Not only this, stretching sheet 
applications can be found in the field of mining. In mineral 
processing, stretching a sheet of fluid flow can be used 
in techniques like froth flotation, where the stretching of 
the fluid sheet helps separate minerals from ore on their 
hydrophobicity. Stretching fluid flow aid in hydraulic 
mining processes where high-pressure water jets are 
used to dislodge and transport materials, facilitating the 
separation of minerals from the surrounding rock.

Various scientific disciplines have extensively 
explored the boundary layer flow of actual liquids passing 
over stretched sheets, evident in polymer sheet extrusion, 
metallurgy, and chemical engineering. Manufacturers 
of these materials aim to stretch them from a slit to a 
specific shape, wherein the cooling rate significantly 
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impacts the desired qualities of the final product. To 
manage this cooling rate and optimize the desired 
characteristics, electrically conductive fluids come into 
play. The author emphasized the pivotal role of stretching 
in plastic extrusion, highlighting its critical importance 
in the process1. There’s been extensive exploration into 
understanding the dynamics of boundary layers along 
continuous solid surfaces and flat planes2,3. Through 
experiments, scholars have unveiled the characteristics 
of laminar and turbulent boundary layers along a 
continuously moving cylindrical surface. This discovery 
sheds light on the behavior of these boundary layers 
in such dynamic settings4. Both analytical techniques 
and experimental approaches have been employed to 
investigate the flow and temperature fields within the 
boundary layer of a continuously moving surface. This 
comprehensive examination offers insights into the 
dynamics of this particular flow regime5. The discussion 
involves a mathematical formulation describing the 
steady boundary layer flow generated by the linear 
stretching of an elastic sheet in its plane. This stretching 
occurs at a velocity that increases linearly as the distance 
from a fixed point grows6. The equation of motion 
governing the boundary layer flow over a stretched plate 
was tackled using the Crane’s model and the Walters’ 
liquid B model, which represents a viscoelastic fluid7. 
Additionally, there was a separate investigation into the 
behavior of incompressible second-order fluid flow across 
a stretching sheet that was documented8. 

This research holds significance for multiple polymer 
processing methods, particularly in the continuous 
extrusion of polymer sheets from a die. Notably, when 
keeping the wall and ambient temperatures constant, 
an intriguing observation emerged: as the thermal 
conductivity (k) increases, there’s a noticeable rise in 
temperature at specific locations, while the Prandtl 
number remains relatively stable or consistent9. 

In investigating the flow of a viscous ferrofluid over 
a stretching sheet, the inclusion of a magnetic dipole 
factor is notable. By formulating momentum and thermal 
energy equations as a five-parameter problem, the study 
reveals that the magnetic field has a substantial impact: 
it alters flow velocity and notably diminishes the rate of 
heat transfer on the stretching sheet10. Analyzing the way 
heat moves across an extended surface involves looking 
at two different situations: one where the surface has a 

set temperature and another where it has a specific heat 
flow at the wall. To do this, researchers use Kummer’s 
functions, especially suited for surfaces that resemble 
parabolic cylinders with a boundary layer that generally 
stays quite broad. Moreover, the research also shows that 
for low Prandtl values, there isn’t a solution resembling a 
boundary layer11.

There’s an exploration into the behavior of 
incompressible, electrically conducting viscoelastic fluids 
as they traverse an elastic porous sheet12. In the context 
where an Oldroyd-B fluid occupies the area above an 
elastic sheet undergoing stretching, alongside a constant 
free-stream velocity, a method employing a similarity 
transformation is applied. This transformation applies 
to both the velocity field and the three components 
of the stress tensor. By employing this technique, the 
governing equations are simplified, resulting in a system 
of coupled nonlinear ordinary differential equations. 
These equations are then approached through numerical 
solutions, utilizing Weissenberg number perturbation as 
a methodology13.

A study investigates the stability of a viscoelastic 
dielectric liquid when subjected to a vertical electric 
field in the presence of a temperature gradient14. The 
article delves into the thermal instability arising within a 
layer of dielectric liquid when subjected to synchronous 
or asynchronous temperature variations along its 
boundary15. The author investigated the boundaries 
of a dielectric fluid layer under the influence of small-
amplitude, time-periodic body forces16. employing 
a systematic approach to examine subtle nonlinear 
effects, the study delved into the influence of time-based 
oscillations within the Rayleigh-Bénard system on heat 
transfer behaviors in dielectric liquids17. Exploring the 
Rayleigh-Bénard-Marangoni instability in micro-polar 
dielectric fluids, the researcher employed the Galerkin 
technique18. Another investigation focused on the flow of 
ferrofluids, specifically over an inclined stretched surface 
affected by a magnetic dipole. Here, the ferromagnetic 
interaction parameter emerged as a critical factor for 
effectively achieving the desired temperature outcomes.19. 

A study explores the effects of thermal radiation, 
velocity slip, and mass convective boundary conditions 
on non-Newtonian heat transfer analysis. Within 
this research, an intriguing finding is unveiled: as the 
parameters for velocity slip and fluid material increase, the 
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velocity field diminishes accordingly20. The significance 
of Jeffery fluid lies in its ability to influence the flow 
velocity of material, a characteristic not exhibited by the 
Oldroyd-B fluid. Interestingly, despite this, the Jeffery 
fluid showcases lower velocities at higher porosity values 
compared to the Oldroyd-B fluid. Furthermore, in terms 
of material transfer in a liquid phase, the Jeffery liquid 
outperforms the Oldroyd-B liquid, displaying slower 
decay rates21.

A study on Maxwell’s hybrid nanoliquid found that 
magnetic fields can be successfully used for controlling 
the flow behaviour of a liquid22.  Upon observation of the 
boundary layer, a notable deduction emerges: the velocity 
profile experiences a decrease when influenced by both 
a magnetic field and a slip condition. This finding holds 
significant implications across diverse applications such 
as polymer fluid extrusion, liquid crystal solidification, 
wood coating, biocompatibility, bio-imaging, and 
biosensors, among others23. A recent study delved into 
the combined impacts of chemical reactions, thermal 
radiation, and electromagnetic forces on the flow of 
hydromagnetic water over an exponentially stretching 
sheet. This investigation explores an innovative cooling 
method employed in nuclear fission reactors. Instead of 
using conventional cooling tubes, it involves circulating 
liquid sodium throughout the reactor’s main body. This 
cooling technique has diverse applications, ranging from 
cooling infinite hot metal sheets in cooling tubs to the 
production of rubber sheets, fabrics, wire cables, and 
fiberglass sheets. Additionally, microwaves are utilized 
to facilitate the circulation of liquid sodium, essential 
for effective cooling within nuclear reactors and various 
manufacturing processes24. The discussion highlighted 
the diverse applications of stretching sheets across various 
fields such as science, metallurgy, and polymer sheet 
extrusion. The findings revealed intriguing relationships 
between key parameters and flow characteristics: 
increasing the magnetic parameter led to a decline in 
velocity profiles. Moreover, elevating the Prandtl and 
Schmidt values resulted in reduced temperature and 
concentration profiles within the flow zone. Notably, an 
increase in the Maxwell fluid parameter caused a shift 
in velocity profiles and amplified the temperature field. 
Additionally, in laminar flow conditions, raising the 
Soret number accentuated the visibility of concentration 
profiles25.

Non-Newtonian fluids find versatile applications 
across industries, serving purposes ranging from 
safeguarding feet in footwear to playing crucial roles in 
food and pharmaceutical manufacturing. Additionally, 
these fluids are integral in processes like cooling liquid 
metal during casting, showcasing their wide-ranging 
utility in various industrial operations. The primary 
findings of the investigation are that temperature 
increases with radiation and thermophoretic parameters, 
velocity slows down with an increase in Maxwell and 
magnetic parameters, and motile microorganisms are a 
declining function of Peclect and bio-convection Lewis 
numbers26. Research investigates the flow of fluids doped 
with ferromagnetic elements over an elastic sheet. The 
study’s proposal suggests that the inclusion of Brownian 
motion enhances the thermal gradient, particularly in the 
presence of Stefan’s blowing condition27. 

The research concludes that leveraging magnetic 
dipoles and thermophoretic particle deposition could 
enhance the flow characteristics of Maxwell liquid over a 
stretched sheet. The improvements in the ferromagnetic 
interaction parameter suggest a reduction in the 
velocity gradient alongside heightened rates of mass 
and heat transfer28. A study gives evidence that when 
the ferromagnetic interaction parameter and Maxwell 
parameter are different, radial velocity will decline. Large 
temperature profile surges are seen for the increase of 
the Biot number and radiation parameters for the hybrid 
nano-liquid29. The study revealed that when magnets and 
suction are introduced, the fluid’s movement decelerates, 
accompanied by an elevation in viscosity, resulting in 
a perceptible sensation of increased “stickiness”30. A 
study highlights that heating nanofluids enhances their 
efficiency notably. The Nusselt number, a crucial measure 
in heat transfer, displays increments attributed to both 
Brownian motion and unsteadiness. Interestingly, in 
contrast to Maxwell fluids, Newtonian liquids demonstrate 
enhanced thermal performance with increases in volume 
percentage and the ferromagnetic interaction parameter. 
Additionally, significant volume fractions and thermal 
relaxation parameters coincide with heightened rates 
of heat transmission and an amplified skin friction 
coefficient31. The effect of variation of various parameter 
on flow and heat transfer is discussed and concluded 
that as the Prantl number grows heat transfer decreases 
whereas opposite behavior can be observed as viscoelastic 
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Figure 1. Mathematical modelling of the fluid flow.

parameter increases and dielectric liquid can be used 
efficiently to decrease the heat transform32.

In the existing literature, numerous authors have 
explored the dynamics of ferrofluid flow and heat transfer 
under magnetic fields. This research, however, focuses on 
investigating the flow and heat transfer of a viscoelastic 
dielectric liquid along an inclined stretched sheet under 
the influence of an electric field. The study involves a 
numerical analysis of the flow induced by a stretched 
sheet in a dielectric liquid. To tackle the governing 
nonlinear partial differential equations, dimensionless 
variables are employed, transforming them into nonlinear 
ordinary differential equations. These equations 
are solved numerically using a shooting iteration 
approach and the fourth-order Runge-Kutta integration  
scheme.

Imagine a scenario where a smooth, unyielding 
surface is tilted at an angle θ to the horizontal, causing 
a continuous flow of an incompressible, non-conducting 
liquid. This flow, devoid of any heat transfer, is directed 
by balanced forces along the x and y axes, effectively 
counteracting gravity’s influence. The surface undergoes 
controlled stretching, its velocity uw(x) = cx gradually 
increasing with distance from the starting point. Adding 
to this setup, an electric dipole is positioned at a distance 
from the x-axis, placed some distance away from the 
surface along the y-axis. These parameters define the 
governing principles governing this specific physical 
arrangement.

     (1)

 

  (2)

 
 

      (3)
The symbols and terms used are explained in the 

nomenclature section for reference.
The boundary conditions are considered to be at a 

Prescribed Surface Temperature (PST) is
 and     

   (4)

The positive constant ‘A’ holds significance, while L=  

represents the characteristic length.

The various significant denotations on temperature 
are

‘T’ denotes the temperature of the fluid
‘Tw’ stands for the temperature of the stretching sheet
‘Tc’ represents the Curie temperature
 The dielectric liquid’s flow is affected by the electric 

field created by the nearby electric dipole. A particular 
source gives rise to the scalar electric potential in this 
scenario.      
 

    (5)

Here, ‘α′ ’ represents the electric field strength at the 
source. The components of the electric field ‘E’ are 
delineated as follows.

 (6)

   (7)

    (8)
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The relationship between polarization ‘P’ and 
temperature ‘T’ is approximated by a linear equation  

    (9)

Here, ε0  and εr represent the absolute and relative 
dielectric permittivity, respectively.

1.1  Solution Procedure
Andersson [10] considered the following non-
dimensional variables

   (10)

  

      (11)

Where,    (12)

Utilizing equations (9) to (12), the boundary layer 
equations (1-3) take on the following structure:

     (13)

 

      (14)
 

 (15)

The boundary condition described in (4) is now 
specified as follows: 

U(ξ,0)=ξ,  V(ξ,0)=0  and θ1 (ξ,0)=1, θ2 (ξ,0)=0 in PST  
      (16)

Introducing the stream function (ξ,η)=ξf(η) yields the 
following result:

) (17)

The prime symbol signifies differentiation with 
respect to η.

Applying equations (9), (11), and (17) within 
equations (14) and (15) results in the following boundary 
value problem.

 

      (18)

   (19)

  (20)

At the sheet, the dimensionless form of the shear 
stress, which represents the local skin friction coefficient 
denoted by, is expressed as:

When setting the surface temperature, it becomes 
feasible to compute the local heat flux, given by:

equations (18), (19), and (20) lead to two-point 
boundary value problems, tackled through both the 
shooting technique and the Runge-Kutta Fehlberg 
(RKF45) method. Adjusting the trial values of  f˝(0), 
θ1’(0), θ2’(0) to satisfy the outer boundary conditions 
involves using the Newton-Raphson approach.

2.0 Result and Discussion
The study explores the influence of altering parameters 
β, Pr and γ1, Gr, and θ, on the flow and heat transfer 
characteristics of viscoelastic dielectric liquid over an 
inclined stretching sheet. These effects are examined 
under prescribed temperature boundary conditions, 
α=1 and λ=0.01 illustrated through graphical  
representations.

Raising β intensifies the electric field produced by an 
electric dipole, amplifying friction within the fluid. This 
increased friction impedes the flow, leading to decreased 
velocity shown in Figure 2 of the velocity profile, 
resulting in a flatter profile. Similarly, as illustrated in 
Figure 2 of the temperature profile, higher values of the 
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Figure 2. Showing profile  f '(η) and Temperature profile  θ1 for various values of  β.
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Figure 3. Velocity profile  f '(η) and Temperature profile  θ1 for various values of  Pr.

dielectric interaction parameter β impact the temperature 
distribution. Elevated β values correlate with a thicker 
thermal boundary layer within the Prescribed Surface 
Temperature boundary (PST).

Positive variations in the Prandtl number (Pr) 
exhibit a corresponding decrease in velocity due to the 
increased viscosity of the fluid. As depicted in Figure 3, 
the impact of Pr values on velocity boundary layers 

showcases this trend. Such findings hold substantial 
significance across numerous dielectric applications, 
spanning crystal formation, metal processing, nuclear 
reactors, metallurgy, fiber spinning, casting, and space  
technologies.

Moreover, Figure 3 vividly illustrates that fluids with 
lower Prandtl numbers exhibit more efficient reduction in 
heat transmission. 
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In Figure 4, the impact of Viscoelastic parameter 
(γ1) on velocities profile f '(η) under prescribed surface 
temperature profile (θ1) (PST) conditions is evident. The 
significance of convection in influencing axial velocity is 
emphasized by varying (γ1). The depicted graphs illustrate 
that as (γ1) increases, the thickness of the momentum 
boundary layer expands, enabling freer fluid flow.

Moreover, the flow exhibits boundary layer 
characteristics. Figure 4 portrays the influence of  
on heat transmission, revealing that an increase in 
Viscoelastic parameter heightens the temperature 
profile  θ1. This arises from the thickening of the 
thermal boundary layer due to viscoelastic normal  
stress.
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Figure 4. Velocity profile  f '(η) and  Temperature profile  θ1 for various values of  γ1
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Figure 5. Temperature profile   f '(η) and Temperature profile  θ1 for  various values of  Gr.
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The Grashof number (Gr) is approximated by the 
product of the buoyancy force and viscous shear force 
acting on a given fluid. When Gr is increased, momentum 
boundary layer thickness increases, resulting in 0% 

pressure gradient across the flow surface. This can be 
observed in Figure 5 of velocity profile f '(η). The buoyancy 
force has evolved as a consequence of the cooled yielding 
sloping layer acting like a positive pressure gradient to 
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Figure 6. Temperature profile  f '(η) and  Temperature profile  θ1  for  for various values of   θ.

Pr β Gr γ1 Nusselt number Skin friction

1 0.6897229 1.53914

3 1.214584 1.932682

5 1.595581 2.071728

0 0.7179273 0.359406

3 0.6746989 2.391956

5 0.6424735 3.793102

0 0.5279590 3.603328

1 0.5934216 2.985272

3 0.6644199 1.986708

0.1 0.6897229 1.53914

0.2 0.6837137 1.58119

0.3 0.6779828 1.62306

Table 1. For different values of non-dimensional parameters local Nusselt number and Skin friction.
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accelerate the fluid in the boundary layer region. This also 
results in decreasing the temperature profile θ1 which can 
be observed in Figure 5.

Despite the various factors that influence viscosity, 
a higher inclination results in greater momentum 
boundary layer thickness, when gravity is increased 
the liquid flows freely. The thermal boundary layer 
thickness is decreased by the inclination. Figure 6  
shows this in more detail provides a view on  f ' (η) and  
θ1 (η). 

3.0 Conclusion
This paper investigates the behavior of a viscoelastic 
dielectric liquid over an inclined stretched sheet, yielding 
several key findings:

•	 The Prandtl number (Pr) influences boundary 
layer thickness, dictating the mechanism of heat 
transfer. A higher Pr leads to a wider velocity 
boundary layer compared to the temperature 
boundary layer, resulting in reduced heat transfer—
an aspect critical for system performance.

•	 Both Grashof and Prandtl numbers contribute to 
enhancing flow and heat transfer, thereby reducing 
thermal heat.

•	 Optimal cooling requires maintaining these 
parameters at their minimum values to ensure 
efficient heat dissipation.

•	 As gravity gets more powerful, the stretching 
sheet’s angle of inclination to the horizontal, as 
well as the thickness of the momentum boundary 
layer, all increase. The quantity of heat that may 
enter or leave is constrained by the inclination. 

•	 When the angle θ equals zero, the inclined 
stretching sheet scenario simplifies into the 
horizontal stretching sheet problem. Similarly, 

setting θ to π/2 transforms the inclined stretching 
sheet problem into the vertical stretching sheet 
case.

•	 The result shows that for achieving desired 
temperature inclination of stretching sheet can be 
used effectively. 

•	 The combination of dielectric liquids and inclined 
stretching sheets finds applications in various 
processes such as separation, material fabrication, 
and optimization of fluid behaviour, leading to 
improved efficiency, control, and performance in 
mining, materials, and fuel-related operations.
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a Distance P Dielectric Polarizaton

cp Specific heat constant ε0 
Electric permeability of free 

space

k Thermal conductivity Tc Curie temperature

(u,v) Velocity components ρ Fluid Density

(x,y) Carsesian component ∅ Electric potential

Prandtl number Ψ Stream function

Viscous dissipation λ1 Relaxation time

Dielectric interaction 
Parameter γ1 Viscoelastic parameter

μ Viscosity α Dimensionless Distance

T Fluid temperature

E Electric field g Acceleration due to gravity
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