
Abstract
The present work investigates the flow of a continuous, laminar, 3-D boundary-layer over a fixed wedge, where the outside 
free-stream flows are approximately approximated by a power of distances. The controlling partial differential equations are 
transformed into coupled nonlinear ordinary differential equations with the necessary boundary conditions using surface 
similarity transformations. These equations involve two physical variables: pressure gradient and shear-to-strain rate. The 
resulting equations are numerically solved by the implicit finite-difference scheme known as the Keller-box approach. The 
obtained results are compared with those reported in the literature for a few special cases. Our numerical results indicate that 
the flow zone is divided into two areas: near-field (close to the wedge surface) and far-field field (mostly controlled by inviscid 
flow). 

*Author for correspondence

1.0  Introduction
Due to the mathematical complexity, it is challenging to 
analyse a general 3-D boundary-layer flow in which the 
velocity components rely on all the space coordinates. 
Three-dimensional flows over a surface can be studied 
using advanced numerical techniques and logical 
mathematical analysis. Most applications, including those 
involving aircraft wings with leading edges that are not 
perpendicular to the wing, such as swept and yawed wings, 
often involve three flows. It is assumed that the effects of 
viscosity are limited to a thin layer adjacent to the surface 
of the body in the case of flow past a body of generic 
shape. In a three-dimensional example, the real main-
stream flow is dependent on all three spatial coordinates, 
and any fluctuations in the pressure along the normal 
would be disregarded. Two space coordinates measured 
along the surface are all that are needed to determine 
the flow that is immediately outside the boundary layer, 
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which is believed to be an inviscid flow. Two new special 
effects that were not present in two-dimensional flow are 
now present in three-dimensional flow. The first of these 
effects is brought on by the convergence or divergence 
of the main flow’s parallel surface streamlines, and the 
second effect is brought on by the curvature of these 
streamlines. Only when the pressure varies in such a way 
that continuity necessitates convergence in a direction 
other than normal to the surface do three-dimensional 
effects appear (Rosenhead1).

Getting the equations for a motion for boundary-
layer flow over the three-dimensional body is the goal of 
the current effort. Howarth2 introduced the flow around 
a stagnation point on a generic surface, which serves as 
the primary source for the three-dimensional boundary 
layer equations. 3-D boundary-layers are dominated by 
the two major free-stream flows (inviscid flow), much 
as in the case of two-dimensional flow where there is 
only one mainstream flow. This leads to the same results 
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for boundary layer equations. Similar to the traditional 
two-dimensional flow, the velocity components of the 
mainline flow may then be controlled by power-law 
relations in both the and directions. Howarth3 created 
numerical solutions to the boundary-layer equations for 
three-dimensional stagnation point flows and depicted 
the flow’s nodal points of attachment. Weidman4 found 
asymptotic solutions for the behaviour in the far field 
during recent work on non-axisymmetric stagnation 
point flow in three-dimensional boundary layers. The 
velocity profiles with sample similarity, displacement 
thickness, and range-varying wall shear stress features are 
included in the results. Howarth5 provided the solution for 
a one-parameter family of non-axisymmetric stagnation-
point flows consisting of two orthogonal Hiemenz 
flows, which denote the strain rates of the superposed 
Hiemenz flows. Howarth only provided solutions within 
the range (0≤α≤1), but he indicated that by applying the 
proper transformations, solutions outside of this range 
might be achieved. Davey6 claims that a weakness in 
Howarth’s work prevented solutions for the region from 
being extrapolated from those found for (0≤α≤1). After 
that, Davey6 looked into these saddle-point solutions for 
Howarth’s formulas. Afterwards, the dual solutions to 
Howarth’s equations were reported by Davey6, Libby7, 
Schofield and Davey8. Only the velocity field was examined 
in Wang9 examination of the constant three-dimensional 
flow caused by a stretching plate. The unstable three-
dimensional flow brought on by a flat surface extending 
in two lateral directions was then included by Surma Devi 
et al.10 as an extension of this issue. The continuum of 
states shown in Howarth’s equations was fully explained 
by the research of Hewitt, Duck, and Stow11.

We learned from the literature review that the research 
of three-dimensional boundary layers is limited to just 
stagnation point flow with a few exceptions. In the current 
paper, we will demonstrate 3-D boundary-layer fluid flow 
over a wedge surface using two mainstream flows that are 
roughly represented by a power of distance of the form  
U∞xm and V∞ym, where U∞,V∞, and m are constants and x 
and y are mainstream flow directions. Bernoulli’s law can 
always be used to link pressure gradient to mainstream 
flows because pressure variation is uniform throughout 
the flow field. Now, the pressure gradient’s strength is 
defined by the constant m. When m=0, the flow is over a 
flat surface and is considered to have a favourable pressure 

gradient for m>0 and an adverse pressure gradient for  
m<0. The Prandtl’s boundary-layer exhibits self-similar 
solutions through similarity transformations, and these 
power-law approximations greatly simplify it (see next 
section for derivation).

 The structure of the essay is as follows. We provide 
the 3-D boundary-layer flow over a wedge surface 
problem formulations in S2. The governing equations 
have been converted into third order coupled ordinary 
differential equations using similarity transformations. 
These equations are nonlinear and cannot be resolved 
analytically. Therefore, they have been resolved using 
the numerical Keller-box approach, or implicit finite-
difference methodology. The techniques employed have 
previously been applied to a number of challenging issues. 
Given in S3 are the method’s steps and the convergence 
criteria that apply to numerical solutions. Using the 
aforementioned method, we looked at how the pressure 
gradient and shear-to-strain rate are two parameters that 
affect how the flow is modified. Finally, we offer a wide 
range of important findings in S4.

2.0 Formulation
The wedge’s surface and the z normal to it are measured 
along the x, y, and z, axes, respectively, in the physical 
configuration of the current inquiry. If a wedge is at rest 
and there is a continuous three-dimensional laminar 
boundary layer flow across it, the flow is in the half-
space z>0. When a fluid with constant density and 
viscosity is forced across a surface, it is anticipated that 
viscosity effects will only affect the boundary surface and 
that flow further from the surface will be controlled by 
a potential flow. The Navier-Stokes equations regulate 
the flow. The continuity and momentum equations for 
an incompressible fluid’s steady three-dimensional flow  
are 

0=V
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VpVV
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ρ
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 where p is the pressure and ),,(= wvuV  is the velocity 
vector in the x, y, and z, directions. Furthermore, for flows 
with high Reynolds numbers, the effects of viscosity are 
limited to a narrow layer close to the surface’s edge. A very 
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standard boundary-layer approximations (Schlichting 
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 and the corresponding relevant boundary conditions 
are  

 andwvuzat        0,===     :0= 		  (7)

 VvandUuzas →→∞→                     : 		  (8)

v is the kinematic viscosity of the fluid and  U=U(x) 
and V=V(y)  are velocities in the  x- and y- directions 
beyond the boundary layer region. Due to the boundary 
conditions (cf. eq. 7), both velocities vary from zero at the 
surface to the major flows at great distances. Enforcing 
these constraints will cause all similarity solutions to 
decay (approach) appropriately for the far-field condition; 
the accommodation of decaying solutions depends on the 
flow parameters. According to equation (6), there is no 
normal pressure gradient. Along the boundary, a power-
law change in the coordinate distance is anticipated for 
both potential flow velocities.

mm yVyVxUxU ∞∞ =)(        ,=)( 			  (9)

 where U∞V∞ and m are constants.The pressure 
gradient’s strength is indicated by the variable m. The 
three unknown velocity components in (4 and 5) can 
be readily reduced by introducing two unknown stream 
functions Ψ1 and Ψ2 as the pressure is a known impressed 
quantity. 
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where f(n) and g(n) are stream functions that are not 

dimensional. The velocity components 
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 are then connected to these 

stream functionsΨ1 and Ψ2. Similarity transformations 
enable the reduction of the three independent variables to 
only one. We obtain a system of connected third order 
nonlinear ordinary differential equations using these 
changes.

 0=))((1))()()(()( 2 ηβηαβηηη fgfff ′-++′′+′′′ 	
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 with boundary conditions 
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 where η is a similarity parameter,
1

2=
+m
mβ  is the 

pressure gradient parameter, and β>0  denotes a 
favourable pressure gradient and β<0  a negative pressure 
gradient. While  α = 

y

x

U
V  is the shear-to-strain-rate 

parameter and β=0  signifies the flow past a flat plate. In 
order to eliminate dependency on x and y in the final 
equations because the wedge surface is fairly large 
according to Benzi et al.13,14, we replace x and y by L (L is 
the reference length of the surface). Therefore, α = U∞V∞. 
Note that the aforementioned system simplifies to the 
stagnation point flow for β = 1. (Rosenhead1). Also take 
note of the fact that the aforementioned equation is new 
to the literature. We arrive to several conclusions that 
have been discussed in the literature: When, the previously 
indicated system (11)–(12) is equivalent to the 
conventional two-dimensional Falkner-Skan flow for α = 
1. The flow around a body of revolution symmetrically 
positioned in a stream is represented by the above system, 
(11–12). The Homann’s flow system, where g(η) = f(η) and 
β = 1, is the previously discussed system. 

Additionally, numerical calculations for various values 
of alpha were made in the current work while taking 
the effects of the pressure gradient into account. The 
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aforementioned system is unable to provide a solution 
for  β = 0, in the two-dimensional situation (Falkner-Skan 
equation).

3.0 Solution Method
Nonlinear problems are notoriously challenging to 
solve and make up the majority of problems in science 
and engineering. Boundary layer equations in three 
dimensions are essentially coupled systems with physical 
parameters. The linked system is always made more 
complex by nonlinearity and infinite interval. Only 
weakly nonlinear or linear problems can be approximated 
analytically using traditional methods, whereas strong 
nonlinear problems frequently fail to do so. Therefore, 
one must create reliable and precise numerical procedures 
for their solutions. In order to solve the whole nonlinear 
system, one can use the Keller-box technique, which is 
efficient and converges to second order. The approach is 
covered in full in Cebeci and Bradshaw15 and Keller16.

 The coupled nonlinear system (11)–(12) is numerically 
integrated over the boundary layer region using an 
implicit finite difference technique. We use the multi-
step system (11)–(12) Keller-box solution technique. 
The system needs to be converted into a system of first-
order equations before adding any additional unknown 
functions. The central finite-difference method is used to 
discretize this first-order system, resulting in a nonlinear 
set of algebraic equations. We use Newton’s linearization 
method to make them linear. It is necessary to employ the 
linear system of equations’ matrix-vector representation.

AD = R 					     (14)
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where that A block tridiagonal structure, where each 
element is a sub-matrix of order six, and N denotes the 
total number of grid points in the η- direction, i.e. 

i

N
η

η 0= -∞  direction, i.e., with is some large numerical 

constant at which and are satisfied. There are also column 
matrices of unknown entries (D) and known entries (R). 
As a result, the exact values of depend on the grid size ηi 
and are unknown in advance. Nonetheless, is selected in 
the majority of our simulations such that the value solely 
depends on value. Enough effort is made to ensure that 
the final convergent solutions have the same difference 
between two successive values. The LU decomposition 
method can be used D to solve the tridiagonal structure 
(14) mentioned above. until the convergence-achieving 
solution is reached inside 

We apply the far-field boundary conditions for 
the pseudo-similarity variable η at a finite value that is 
sufficient to achieve the far-field boundary conditions 
asymptotically for all values of the pertinent parameters 
considered because the computational domain in this 
problem must be finite but the physical domain in this 
problem is unbounded. Our code employs a changeable 
grid size and a number of flow domains to get the 
precise wall stress values f˝(0) and g˝(0). The Navier-
Stokes equations f΄(η) and g΄(η) have boundary layer 
limit solutions that are velocity profiles in each case. 
By employing a very fine grid in the flow domain to 
capture any discernible flow irregularities, this Keller-
box solver performs wonderfully and is flexible. Each 
of our simulations had an error tolerance of 10-7. The 
velocity profiles  f΄(η) and g΄(η) for various values of 
α and β are shown in the following figures. As soon as 
the Keller-box algorithm converges and the velocity 
profiles are generated, we determine the displacement  
thicknesses.

 ηηδηηδ dgdf yx ))((1=       ,))((1=
00

′-′- ∫∫
∞∞

	 (15)

  for various physical parameters. These results are 
discussed in Figure 6.

4.0 Result and Conclusion 
This article discusses the physical explanations for how 
the intriguing parameters that enter the problem behave. 
Using the Keller-box approach, which is covered in the 
preceding part, the system (11)-(12) has been numerically 
solved. The shear-to-strain rate (α) and pressure gradient 
(β) are two of the parameters that have been numerically 
calculated to determine the conditions under which a 
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steady flow is achievable. Finding the velocity profiles f΄(η) 
and g΄(η) as well as the wall shear stresses f˝(0) and g˝(0) 
when the Keller-box code converges to 10-7 is the main 
goal of the analysis. The residual error is used to evaluate 
the Keller-box method’s convergence criteria. In order to 
do this, we have selected the continuous decay of f΄(η) 
and g΄(η) at η=1  as well as f˝(0) and g˝(0) as a function 
of the rising iteration number. Figures 1 and 2 show this 
for a few physical parameters (defined). Although the 
solutions to a linear algebraic system of equations are 
certain to contain errors (Biberdorf and Popova17), these 
errors can be reduced to the desired level of accuracy 
by choosing a better initial condition as the number of 
iterations increases. The figures effectively explore these. 
The residual error between two successive iterations 

reduces gradually during the first few iterations, but 
beyond a certain number of iterations, the error decreases 
in the exponential form, indicating that the solutions are 
converging. The results of f˝(0) and g˝(0) further support 
these errors, and it is important to note that they show the 
same general patterns. The numerical findings are shown 
graphically to highlight the key aspects of the model.

 For β = 1 and α in (-1,1), the results of (11)-(12) have 
been determined using the Keller-box approach and are 
shown in Table 1. The acquired results are compared 
to those of Davey6 and Rosenhead1 in order to validate 
the newly altered equations. There is good agreement 
between our results and the two solutions in the table 
for the skin frictions f˝(0) and g”(0). It demonstrates that 
the new equation form suggested in this work has a good 

Figure 1.  Variations of residual error for f΄(η) and g΄(η)  for η = 1 with number of iterations.

Figure 2.  Variations of residual error for f˝(0) and g˝(0) with number of iterations. 
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consistency with the literature. Keep in mind that the 
pressure gradient forces the solution for  α ∈(-∞,∞) to 
exist. These calculations assume that η∞ is 4, or N=401 
grid points. Consecutive iterations reduce error gradually, 
but after a given number of iterations, error drops in the 
exponential form, indicating convergence of the solutions. 
The results of f˝(0) and g˝(0), which show that the same 
general tendencies are present, further support these 
errors. The numerical findings are graphically displayed 
to highlight the key characteristics of the model.

 The range of parameters that emerged as the most 
intriguing after examining the behaviour of the physical 
profiles as a function of coordinate distance. The velocity 
profiles f΄(η) and g΄(η)  are shown in Figure 3 as functions 
of eta for a pressure gradient of β =0.5  and for various 
shear-to-strain rates of α. All velocity profiles f΄(η) and 
g΄(η) meet their derivative condition at infinity (i.e.,  
f΄(η) →1, g΄(η) →1 as, η →∞,). This is obvious. Remember 
that the derivative requirement is satisfied at the value of 
N, which is 701 (η∞  : 7). Ten iterations are required for 
convergence. In contrast to Figure 3a, picture 3b shows 
how the velocity curve behaves differently for various 
values of α = 0. For α = 0, the flow shows a propensity 
toward boundary-layer separation; for example, look at the 
curve for α = -0.5; nevertheless, for α = -1, the flow totally 
separates at the wedge surface, where the boundary-layer 
assumptions end, and then quickly reattaches for some η. 
Additionally, for other values of α = 0.0,0.5,1,  , the profiles 
approach the wedge surface, resulting in a thin boundary 

layer. Figure 3a, on the other hand, makes it abundantly 
evident that all of the curves are harmless. It suggests that 
when the velocity profiles become more localised at the 
surface, the thickness of the boundary layer is reduced.

 Figure 4 depicts the impact of a favourable pressure 
gradient beta on the velocity f΄(η) and g΄(η) in two 
directions at various shear-to-strain rate parameters 
(α). The velocity curves are seen to monotonically tend 
toward their asymptotic terminal state. Additionally, 
velocity profiles drop off as pressure gradient β increases. 
Additionally, as the pressure gradient rises, the thickness 
of the momentum boundary-layer diminishes. The 
velocity curves are clearly within the bounds in all of the 
figures. It should be noted that in the three-dimensional 
boundary layers, there is no reverse flow for favourable 
pressure gradient. The profiles become more stable under 
the favourable pressure gradient, which naturally keeps 
them from separating. Calculations with a rising pressure 
gradient showed unmistakably that the profiles were 
constrained to an area near the wedge surface.

 When the Keller-box code converges and the velocity 
profiles are created, the key findings in terms of wall 
shear stresses are now discussed. Figure 5 explores these 
wall shear stresses as a function of the shear-to-strain 
rate parameter α in the range α ∈[-5,5] (which can be 
expanded to (-∞,∞)). The figure shows the values f˝(0) 
and g˝(0) derived from the Keller-box code as dashed 
and solid lines, respectively. It should be noticed that 
all tested   g˝(0) values gradually increase as α is raised 

Figure 3.  Variation in velocity profiles and their relationship to various values of  α, keeping β =0.5 constant.
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from -5 to 5. Unexpectedly, g˝(0) curves change their 
orientations at α = 0, as is shown in the illustration. 
The values for rising  α values gradually increase for  

f˝(0), in contrast. The curves for f˝(0) become nearly 
flat and growth becomes constant beyond a certain  
α(:10).
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 Figure 6 also shows the displacement thicknesses as 
functions of alpha for various beta. Here, dashed and solid 
lines stand in for δy and δx, respectively. The Simpson’s 
⅓rd rule is used to do integration on the data acquired 
from (15). The Keller-box technique uses this piece of 
code. While there is a slight discrepancy between the δy 
and δx, values in this example, the curves for both δx and 
δy become flat as α increases. This implies that for every 
set of parameters, the velocity profiles are linked to the 
wedge surface and the boundary-layer thicknesses drop. 

As a result, the flow in the boundary-layer is constantly 
convected along the direction of the wedge’s wall. For all 
values of the accelerated pressure gradient parameter β, 
this is shown.

 We noted in the literature that the analysis of 
three-dimensional boundary layers is only possible for  
β = 1  (i.e., the point at which α ∈[-1,1]  stagnates). Here, 
we’ve broadened the solutions’ applicability to various 
beta values. We compared our numerical solution to 
the Davey6 equation to confirm the equation. However, 

Figure 4.  Variation in velocity profiles and their relationship to various values of  β, for i. (a) and (b) for  α = 2.0, ii. (c) and (d) 
for  α = 0.3  iii. (e) and (d) for    α = 0.6 , iv. (g) and (h) for    α = 0.9 .

β = 1

α f˝(0)
 (Present) 

f˝(0)
 (Davey)

f˝(0) 
(Rosenhead)

g˝(0)  
(Present) 

g˝(0)
(Davey)

g˝(0)
(Rosenhead)

-1  1.27339892 1.2729 — -0.80261050 -0.8112 — 

-0.75 1.24840014 1.2473 — -0.48302587 -0.4821 —

-0.5 1.23112719 1.2302 — -0.11188326 -0.1115 —

-0.25 1.22603177 1.2251 — 0.26800659 0.2680 — 

0 1.23357914 1.2326 1.233 0.57085080 0.5705 0.570

0.25 1.24875909 — 1.247 0.80582232 — 0.805

0.5 1.26820644 — 1.267 0.99912778 — 0.998

0.75 1.29018795 — 1.288 1.16570303 — 1.64

1 1.31373362 — 1.312 1.31373362 — 1.312

Table 1.  The numerically solutions of skin frictions f˝(0) and g˝(0) (Compared with literature results)
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the negative pressure gradient (β = 0) has no known 
solutions. For an unfavourable pressure gradient, we tried 
several initial circumstances and grid lengths, but there 
isn’t a solution. The causes for the lack of solutions for 
negative β are thus a further significant question, and we 
anticipate that the addition of the magnetic field in three-
dimensional will aid us in this instance, which is a future 
subject of interest.
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