
Abstract
The ultimate objective of modern engineering applications in mining and material science is to develop good quality novel 
materials with desirable qualities. Machine Learning (ML) is used in the mining industry to provide solutions to complex 
problems of the mining industry and improve the efficiency of the overall system. ML methods are increasingly being used 
by materials scientists to uncover hidden trends in data and generate predictions. Furthermore, data centric techniques can 
provide useful insights into the basic processes that influence material behaviour while simultaneously reducing human labour 
in large data processing. The ability of persons to find new materials and infer complex relationships is important for the 
development of new materials. Large amounts of machine-readable data must be available to use statistical methodologies to 
speed materials research. In mining engineering, ML can be used for analyzing geographical data, assessing the risk of rock 
fall, predicting equipment failures and impact of mining activities on the environment etc.  Material science data may be used 
in a variety of ways, including property prediction, the search for new materials and discovering synthesis methods. Selecting 
proper machine learning techniques to provide solutions is very important and that is discussed here. The purposes of this 
paper are to provide a comprehensive list of different ML techniques which are applied for the mining and material science 
domain.  

*Author for correspondence

1.0 Introduction
As innovation goes higher than application of that 
new technology in industry also goes next level with 
new direction. Artificial Intelligence (AI) is one of the 
prominent areas which are used in many fields to achieve 
high efficiency with less human interventions. Machine 
learning methods may be used to apply AI to a range 
of industries. Machine Learning (ML) techniques are 
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applied in different techniques like medical diagnosis and 
medicine recommendation, crop recommendation in 
agriculture, marketing, supply chain management, self-
driving cars, speech reorganization, mining engineering, 
material science, fraud detection and prevention etc. For 
a variety of applications, machine learning techniques are 
used in mining and material science in that most common 
one is prediction of quality of mined metal, equipment 
failures and impact of mining activities on environment 
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and materials properties with the goal of finding new 
materials. Since 2018, there has been significant activity 
in using machine learning in the mining industry, 
particularly in the field of mineral exploration, primarily 
driven by the abundance of available data1. Figure 12 shows 
an overview of machines in the mining industry. The 

mining industry is characterized by its dynamic nature as 
well as where frequent fluctuations are common, which 
are accompanied by uncertainties regarding resource 
prices, volatile resource fields, and the management 
of large projects throughout their entire life cycles. 
Mining companies have profited from the application 

Figure 1. Machine learning in mining2.

Figure 2. Application’s of the ML in materials science domain5.
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of ML techniques in discovering valuable minerals for 
extraction. Many review articles give overviews about 
this3,4.

Repeating theoretical and experimental 
characterisation investigations are generally extensive 
and it takes a long time to find new materials. As shown 
in Figure 2, novel (new) materials research is divided into 
different stages and various scientific teams are involved 
in it. Even though skilled people are involved in every 
phase, but limited possibilities are there for reutilizing the 
input between earlier and later phases but if we do so we 
can accelerate the overall process5. Presently, numerous 
outstanding review papers which give information on 
materials science research using machine learning6. The 
review paper7 gives an outline of the state-of-the-art in 
the subject of continuous materials mechanics in terms of 
machine learning and statistical learning methodologies. 
A wide range of relevant investigations are presented 
in paper8, demonstrating that ML may be applied to 
construct efficient as well as accurate materials. There are 
a variety of challenges that exist when we use data and 
data analytics methods in material science research9,10 and 

article11 presents a future materials innovation ecosystem 
in a forwarded direction of data informatics.

In recent years the area of ML expanded in material 
informatics12. Given the quick pace of change in 
this industry, it’s difficult to grasp both the scope of 
opportunities and the best techniques for implementing 
them. In this paper tried to deliver a summary of the areas 
in which ML had a significant impact in materials science 
domain and evaluation metrics used in ML models. 
Finally try to explore a few of the potential problems and 
challenges that the materials society has in effectively 
utilising machine learning’s capabilities.

ML applications in discovery of materials and design 
fall into three categories: prediction of material properties, 
new material innovation, etc. The primary idea behind 
this is to find novel materials to perform better. 

2.0 Machine Learning Approaches
Applications of ML and AI to materials science are now 
common. Applying machine learning techniques involves 
many steps. i.e., shown in Figure 3.

Figure 3. Basics process of machine learning.
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2.1 Data Collection 
Data collection is an important step of ML and that rests 
on “quality” and “quantity” of the data and collection 
of such types of data is a major challenge in material 
informatics. Quality and quantity of the datasets used 
for the training the ML algorithms plays an important 
role in order to create precise ML models. Identification 
of training experience is the first step of the ML model. 
This identification or gathering or creation of the training 
dataset mainly depends on how we want to train our model. 
The data was obtained from either publicly accessible 
open sources or individually collected for private data. 
There are a variety of datasets freely available for generic 
purposes in different platforms such as Kaggle13 and UC 
Irvine Machine Learning Repository14. 

 The use of ML techniques in the mining industry 
evolved tremendously due to large availability of the data. 
The mining data set is available through various resources 
like data.world15, which provide data related to the 
number of mineral mines, agricultural minerals, ferrous 
metal mines, mines and mineral resources, global mining 
location data, nonferrous metal processing plants, etc. 
Spatially explicit estimates of the area utilized for surface 
mining on a global level are provided by Global Mining 
Areas and Validation Datasets. This dataset comprises 
over 21,000 polygons representing mining activities, 
primarily focused on coal and metal ores. Multiple data 
sources were combined to determine the approximate 
locations of active mines between 2000 and 201716. The 
dataset17, provides comprehensive data on the global 
extraction of coal and metal ores at the level of individual 
mines. It encompasses information from 1171 mines 
across 80 countries, detailing production figures for 80 
different materials between the years 2000 and 2021. 
Kaggle provides a dataset for quality prediction of mining 
process18, though this percentage % of silica in the iron 
ore concentrate can be predicted. 

There are a variety of datasets accessible in the materials 
sciences. In that many of them are free and other need a 
paid membership to use part or all of their services. In that 
few datasets are focusing on structural evidence and some 
on chemical/ physical attributes of materials. University 
of BATH19 provides various engineering science data. In 
that material science data is also available with respect 
to computational materials research, nanotechnology 

related data and electronic-structure data from density-
functional theory. Open dataset is available for a variety 
of materials20. The ubiquitous Cambridge Structural 
Database (CSD)21, contains millions of crystal structures 
dataset and inorganic crystal information available in 
Inorganic Crystal Structure Database (ICSD)22, COD23 
and ICDD24, and many others also available for chemical 
systems, such as GDB725 for small organic molecules 
and ZINC826 virtual screening of compounds. Figshare 
contains 3 types of datasets i.e. dilute solute diffusion, 
pervoskite stability of perovskite materials and metallic 
glasses dataset27. The majority of these databases provide 
both a web front-end and an Application Programming 
Interface for easy exploration and visualisation of data.

2.2 Data Pre-processing
When it comes to enormous datasets, we need to 
remember “four V’s,” i.e. volume, variety, veracity and 
velocity of data. As a result, data must be normalised and 
cleansed before being used. Before proceeding further, 
handling missing or inconsistent data is very important 
to get accurate results.

2.3  Feature Engineering
Using statistical or machine learning methodologies, 
feature engineering transforms raw data into desired 
features. Material science research features must be capable 
of capturing all essential data like properties of materials. 
The amount of processing required strongly depends on 
the algorithms which we use. The extraction of features 
not required for deep learning approach28. Naturally, the 
optimum representation relies on the target extent as well 
as the diversity of the occurrence space. Descriptors should 
ideally be uncorrelated, as many correlated characteristics 
might reduce the model’s efficiency and accuracy. Further 
feature selection is required to avoid the dimensionality 
reduction29. When it comes to image data, there are four 
categories of characteristics: geometric features, statistical 
features, texture features, and colour features need to be 
extracted30.

2.4  ML Model Design 
Machine learning models are designed to perform various 
tasks like prediction, classification etc. ML algorithms are 
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mainly categorized into three groups i.e., Unsupervised, 
Supervised and Reinforcement learning.

2.4.1  Unsupervised Learning 
It refers to using the AI concept to group the patterns 
in the data without using training dataset and this is 
applied when no class labels are obtainable or used when 
we don’t know exactly what you’re looking for. Principal 
component and cluster analysis are the two main methods 
which are used in machine learning applications. It takes 
an enormous amount of time to evaluate today’s rapidly 
expanding datasets in the manufacturing industry and 
make inferences from them. Engineering materials are 
grouped together based on material similarity. In this 
experiment, the K-means algorithm was applied for 
clustering31. Research article presents unsupervised 
learning algorithms such as k-means and CLARA. These 
algorithms are used to group mine planning blocks into 
clusters based on their similar grades, but with dissimilar 
processing destinations32. Machine learning techniques 
are utilized to address numerous challenges in surface 
lignite mining operations. In this context unsupervised 
machine learning is applied to mineral exploration 
and enhancing mine planning through image analysis. 
Specifically, unsupervised machine learning proves 
valuable in interpreting satellite images for both deposit 
exploration and assessing the environmental impact33. 
Predictive model of materials depends on the features 
selected and clustering can be used for selection of optimal 
feature set. In this experiment K-Means, agglomerative, 
and density-based clustering is used to categorize 
clusters in a diverse set of 425 silver nanoparticles34. 
Understanding the trends, associations, and linkages 
in material data sets, as well as presenting conclusions 
to others, depends heavily on data visualization. In an 
experiment, self-organizing maps or Kohonen networks 
are used to help visualize the nanoparticles of silver and 
platinum grounded on structural similarities and to 
uncover hidden patterns. Both approaches may be used 
with computational data as well as experimental results, 
and they may be helpful in identifying patterns related to 
more complex combination, processing, or operational 
settings35.

2.4.2 Supervised Learning
This learning algorithm is mainly used for classification 
and prediction tasks. In supervised learning, the first 
model is trained with known data (Training Data) and 
tested with unknown data (Test Data). “Cross-entropy” 
and “negative log-likelihood” are the most prevalent 
loss functions for classification tasks, whereas “root 
mean squared error” and “root mean absolute error” 
are frequently employed for regression assignments. 
Many works done on mineral exploration in the mining 
industry using ML techniques based on geological data. 
Where geochemical survey data and deep learning 
techniques are used36. This article37 presents a study 
comparing the effectiveness of different machine learning 
techniques for perceiving geochemical irregularities 
allied to mineralization. The techniques evaluated include 
an incongruity gauge, a semi-administered classifier, 
and a managed classifier, completely built on the KNN 
algorithm. To evaluate their effectiveness in accurately 
identifying geological rock types in an area with complete 
ground validation information, several ML algorithms 
such as Naïve Bayes, k-nearest neighbor, random forest, 
and support vector machines are compared38. ML is used 
in mineral processing and also used in mineral processing 
for prediction and potential difficulties of separation and 
the identification of minerals39,40. For mineral studies, 
Support vector machine, random forest, and artificial 
neural networks are frequently used supervised learning 
algorithms41. In the research paper, PSO-ELM used for 
prediction rockbrust and obtained good result which 
shows direction for future study in this field42. In recent 
research paper for rockbrust prediction SVM, BP, RBF, 
RF, ELM and global optimization algorithm is used also 
achieved good result43.

ML is used in the material science in material 
classification, large-scale simulations and calculations, 
construction of DFT functional, and property 
prediction and material design have gotten a lot of 
attention44-46. Mechanical material qualities must be 
properly anticipated and well-ordered because which 
are closely connected to and influenced by progression 
constraints and microstructures47. These data-driven 
techniques in materials science have a lot of potential. 
ML presentations for metallic material representation 
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are discussed in the following review. Many factors 
relating to material processing and structure have an 
impact on the qualities and performance of produced 
components48. The practice of administered ML to foresee 
the mechanical characteristics of materials depending 
on their microstructural pictures is investigated49. ML 
models are used to foresee the mechanical characteristics 
of graphene-armoured metal matrix nanocomposites, 
experiment out of many ML models, G-SVM gives the 
furthermost precise result although it comes at a greater 
computational cost50. The mechanical properties of 
fibre composites were predicted using supervised ML 
approaches, and the observed ML model was capable 
of correctly predicting the homogenised characteristics 
of random microstructures correctly51. The UTS of a 
material is the extreme force it can bear beforehand 
failure. For the ultimate tensile strength of the material, 
ANN and K-nearest-neighbor method were used, and it 
was discovered that ANN performs better52. The effects 
of composition and processing factors on the strength, 
impact toughness, and ductility of API grade micro alloyed 
channel steel is investigated in article53. The link between 
composition and processing factors and mechanical 
qualities is determined using ANN models, which are 
adept of likelihood and diagnostics in nonlinear and 
multifaceted systems. The function of different aspects in 
building pipeline steel with such increased performance 
was successfully studied with respect to various 
parameters. Locally weighted regression algorithm was 
fruitfully applied in determining the tensile power of steel 
is a hot-rolled concept54,55.

From “chemical composition, heating, rolling, 
and chilling temperature” various 18 parameters were 
chosen as inputs. The output variable and these factors 
have a definite physical contributory link. In addition, 
least squares SVMs are effective methods for predicting 
materials’ elastic modulus and yield stress. Machine 
learning algorithms have been identifying connections 
and patterns from enormous volumes of complicated data 
for decades. The materials science society has recently 
begun to participate in these approaches in order to 
excerpt information and intuitions from collected data. 
Many advancements in computational methods, such 
as DFT56, have occurred. DFT has been used in atomic, 
molecular, and chemical systems, as well as extended 

solids, surfaces, defects, and 0D, 1D, and 2D systems. 
Structure, electronic/transport, thermal, electron–
phonon, optical, catalytic, magnetic, topological, and other 
features have all been investigated57. Thermodynamic 
Permanence prediction of solids materials DFT and ML 
is one of the important areas where many works are going 
on. Work started with analysing a data set that comprises 
DFT intentions of around 250,000 cubic perovskite 
systems. The findings imply that by narrowing the space 
of important chemical compositions, machine learning 
may be utilised to rapidity up extraordinary-amount 
DFT computations (by at minimum a factor of 5) without 
sacrificing accuracy58. Different prediction models of 
machine learning algorithms like NN, KNN, RF, SVM, 
DT and AdaBoost” classifiers are recognised to expect 
thermodynamic stability59.

Materials property prediction helps in novel resources 
discovery. The use of ML algorithms to aid the discovery 
of record-breaking supplies is demonstrated in article60. 
Despite their failure to discover novel chemistries, 
the models are quite good at recognising the unusual 
(extraordinary) compositions in the dataset we used. 
The identification of new ternary compounds can be 
considerably accelerated using an iterative mix of ML 
approaches and first-principles computations61. This 
research62 highlights the critical need to improve the 
exploratory capacity of present ML algorithms for 
novel material discovery. Introduced a set of k-fold-m-
step Forward Cross-Validation (kmFCV) techniques 
as a novel way to evaluate machine learning algorithms 
for exploratory prediction. Modern chemistry and 
materials research rely heavily on atomic and automated 
assembly replications created on quantum theoretical 
computations. Simulations may be speed up using 
machine learning models, allowing for greater period 
and span scales. Their productivity of the developed 
exemplary be contingent strongly on the proposal and 
dataset cast-off for the process. In this area many research 
work happened by using ML techniques and in article63 
tried to consolidate such works. Many supervised 
machine learning algorithms are used in material science 
in recent years i.e Artificial Nueral Network65,66, Naïve 
bayes67,68, CART69, SVM70,71,72, bagging, AdaBoost, and RF  
regression73.
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2.4.3 Reinforcement Learning (RL)
RL is a different type of learning than supervised or 
unsupervised learning. An RL agent will get rewards when 
he moves from one state to another. The agent performs 
an activity that has an influence on the environment 
and results in a new state based on the present state. The 
scoring function evaluates the completed action, and the 
agent learns if this activity leads to a reward in the present 
state of the environment based on the reward.

A self-learning AI framework was proposed for 
copper mining operations, specifically for analyzing 
drilling machines and processing mill sensor data. This 
framework shows its practicality for real-time production 
planning with incoming new information in mining 
complexes74. Chemical species adapted to highly specific 
demands are produced through molecular discovery. In 
this article, researchers introduce ORGANIC, a context 

built on Objective-Reinforced GAN that may produce a 
spreading across molecular space that corresponds to a 
certain set of necessary metrics. A model that combines 
a GAN to generate non-repetitive sensible molecular 
species and RL to bias this generative distribution 
to some attributes75. RL is applied to microstructure 
optimizations with the goal of identifying the underlying 
physical processes of improved functionality. According 
to this work, RL is a potential machine learning technique 
for problems involving material design optimization 
and for improving comprehension of the dynamics of 
microstructural simulations76.

2.5  Model Evaluation
As previously stated, the basic purpose of ML algorithms 
is to train and develop an effective learned model that 
makes correct predictions. Calculated accuracy helps to 

Evaluation Metric Formula

Coefficient of Determination(R2)

Mean Square Error(MSE)

Root Mean Square Error(RMSE)

Mean Absolute Error (MAE)

Accuracy

Precision P = 

Recall

F1-Score

 Note: SSR is “Sum of Squared Regression” and SST is “Sum of Squared total”. 

Table 1. Performance evaluation metrics
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ensure that the model works accurately or not. While 
handling ML models, we need to know about how to 
handle the underfitting and overfitting of data. It’s critical 
to strike a balance between underfitting and overfitting by 
adjusting the hyper parameters to build an ideal model. 
This crucial phase of fine-tuning hyper-parameters to 
get the best result is not always straightforward, since 
it takes efficient explorations, time and tolerance. To 
measure the performance of ML algorithms various 
statistical approaches are used, in that some listen with 
mathematical formulas in Table 1. These techniques 
display how the model fits with given data. They may also 
be used in sensitivity analysis to highlight the significance 
of each input variable in the prediction process. Statistical 
metrics may be used to analyze the success of machine 
learning approaches as well as to compare the effectiveness 
of various algorithms. To evaluate the overall performance 
of the classification model accuracy metrics is  
used.

3.0  Challenges
Machine learning is increasing its role in the mining 
and material science engineering field day by day due to 
requirements and demand. A mining industry contributing 
a large to global economy and mining sustainability, and 
achieving high efficiency is a challenging task due to 
environment and other external factors. ML are rapidly 
emerging as game-changing factors in the mining 
industry and this have the power to completely transform 
mining operations, enhancing efficiency, safety, and 
sustainability. A Materials informatics has evolved from 
a marginal field of research to a well-established subject, 
with different frontiers and finest practices for applying 
ML to materials development. 

3.1 Data Collection 
However, having a huge data volume is not simply 
advantageous; dealing with massive volumes of data 
may also be difficult. Due to significant advancements 
in sensors and data collection methods on the one hand, 
and storage technologies on the other, data are becoming 
increasingly easy to obtain and store. Many domains 
nowadays have no concerns about collecting massive 
volumes of data without understanding how they will be 

examined. The explosion of data may be seen with respect 
to total samples gathered in a given time, but also amount 
of attributes, or features, that are assessed instantaneously 
throughout the process. Now data is growing from 
single dimension to n-dimensions and dealing with that 
data also throws up lots of challenges. In the mining 
industry, the availability of historical data may be limited, 
particularly for newer mining sites or unconventional 
methods. This can impact the performance of the training 
model. Ensuring the efficiency of ML models relies deeply 
on the quality of data.

3.2 Feature Engineering
The use of feature engineering is important in supervised 
algorithms. The feature must be accessible, applicable, 
and machine-readable. The accuracy and computation 
time of the model are determined by choosing the 
proper feature vector. Underfitting may result from fewer 
features, whereas more features may increase computing 
costs. Therefore, choosing appropriate and pertinent 
elements from the real-world environment in the field 
of mining and material science is a difficult issue. Deep 
learning may be used in this way to improve outcomes 
from features without relying much on human input for 
feature building or feature selection.

3.3 Selection of Appropriate Algorithm
There is no prior rule that any algorithm works better 
for mining and material science research. Efficiency 
of the algorithm depends on the problem domain and 
dataset. We always need to work on various algorithms 
and then choose which algorithm gives the best solution 
to our concerned problem. So, selecting an appropriate 
algorithm is another challenging task.

In most cases, computers using ML/AI tools are 
superior to people at tasks like analyzing mining 
geographical data, predicting mine operation expenses, 
mineral analysis, material prediction, etc. But in between, 
human intuition will continue to be valuable for sanity 
checks and mistake reduction.

4.0 Conclusion
This paper comprises generic methodologies as well 
as their application to interpreting the complicated 
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interactions along the mining metals quality prediction, 
resource estimation, ore sorting and quality checking, 
geotechnical engineering in mining industry and in 
material science field composition, processing, structure 
and mechanical characteristics using machine learning 
techniques. This article outlines fundamental ideas of 
machine learning and each stage of the workflow with 
aims to provide a comprehensive list of different ML 
techniques which are applied for the mining and material 
science domain and challenges which need to be faced 
during mining and material science research. This paper 
has explained the problems regularly associated with 
applying machine learning and has provided appropriate 
guidelines for its effective application. Advanced ML 
and geospatial intelligence can create a huge impact on 
future research on mining engineering, which promotes 
sustainability with increased efficiency with effective 
handling of resources. ML techniques help the future 
scientists to work on material property prediction and 
molecular simulation. 
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