
Abstract
The present study focused mainly on developing PSO based ELM model to predict cylinder pressure associated parameters. 
Performance of PSO-ELM model then compared with ELM model to obtain its credential. For training and testing the models, 
data has been acquired through experiments on a Twin Spark Ignition (TSI) gasoline engine using EGB as fuel. The various 
operating variables are treated as input data whereas cylinder pressure associated parameters are treated as output data for 
the model. The result of the proposed modelling study indicated that PSO-ELM model has obtained the best performance with 
lowest value of MSE, MAPE (%) and hidden layer size as compared to ELM model. Hence PSO-ELM results in an efficient model 
structure with great generalization performance. Further, it is also observed that PSO-ELM takes more time as it calls for an 
iterative procedure for searching the optimal solution as compared to ELM, which takes only a single epoch. 

*Author for correspondence

1.0  Introduction
With the ever-increasing prices of conventional fuels 
due to lack of reserves and rapid rate of consumption, 
there has been a greater tendency towards the search for 
environmentally friendly renewable fuels in the recent 
years. From the last two decades, the Indian union 
government is adding ethanol to the gasoline in small 
percentage. They increased ethanol percentage from 1.5% 
in 2014 to 10% in 2022 and aims to mix 20% ethanol 
by 2030. They also stressed on the point that petrol 
engines need to be compliant with 20% ethanol by 2025 
five years sooner than the deadline of 20301. Therefore, 
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it is necessary to carry out studies to determine the 
usability of ethanol gasoline blends at various operating 
conditions. It costs money and time to perform engine 
studies under different operating modes and fuels. The 
adoption of Artificial Neural Networks (ANN) can reduce 
costs and save time. In recent years, there has been many 
modelling works involving various learning algorithms 
in this domain and has shown significant success. Kiani 
et al.,2 developed prediction model using standard 
backpropagation (BP) algorithm for the performance and 
emission parameters in SI engine operated with ethanol 
gasoline blends. It was shown that an ANN model with 
BP algorithm makes prediction model fast, accurate and 
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reliable, particularly in case of failure of numerical and 
mathematical methods. Mostafa Kiani Deh Kiani et al.,3 
developed an ANN model with BP algorithm to predict 
Spark Ignition (SI) engine thermal balance under different 
engine speeds, loads and ethanol gasoline blends. The 
correlation coefficient of 0.997, 0.998, 0.996 and 0.992 
were observed for work utilized, heat lost through the 
engine exhaust, heat lost through engine cooling water and 
unaccounted losses respectively. The Back Propagation 
(BP) algorithm is the most popular and extensively used 
algorithm which can deal more rapidly with complicated 
nonlinear systems. However, it has many drawbacks. 
Most importantly, it takes more processing time because 
of its iterative characteristics. The algorithm often has a 
tendency to converge to local minima. A large difference 
between the global minimum and the local minimum 
clearly makes this factor highly undesirable. Since the 
difficulty in stopping the iteration in this error reduction 
technique, there might be the network over trained with 
reduction in generalization performance4,5. Further, the 
optimum values ​​of the learning rate and momentum 
rate parameters significantly contributes to the 
convergence and overall performance of the network, and 
determination of their optimal value are absolutely specific 
 problem6.

An ELM algorithm developed by G. B. Haung7 is a fast 
learning algorithm. It is a powerful modeling technique 
employed for solving problem particularly in large data 
sets. A.H. Sebayang et al.,8 developed engine performance 
prediction model using ELM. They predicted different 
performance and emission parameters of the engine 
with a value of 0.980–1.000 for R2 and 0.411%−2.782% 
for MAPE. Weiying Zeng et al.,9 performed an accurate 
model using ELM to predict gasoline engine’s output 
torque. This model showed its ability in predicting the 
engine torque with high accuracy with RMSE was about 
9 N-m, which is about 2.7% mean torque.  It is also 
demonstrated that performance of progressive ELM 
is similar to that of LM algorithm while having higher 
accuracy and superior generalization. A.S. Silitonga et 
al.,10 used K-ELM technique for the development of 
prediction model for engine performance and emission 
parameters of biodiesel-bioethanol-diesel blends. They 
obtained a prediction value with MAPE between 1.363– 
4.597% and R2 values approximately equal to 1. Zhao Y 
et al.,11 reviewed prediction models of carbon emissions 

on machine learning basis. They made a comparative 
analysis of five types of prediction models of carbon 
emissions based on BP, SVM, LSTM, RF and ELM. Based 
on the comparison they summarized that SVM and ELM 
perform better with a lower Mean Square Error (MSE) 
and MAPE than BP and LSTM models. Viviana Cocco, 
et al.,12 developed optimized prediction ELM models for 
the IMEP of a SI engine. It is noticed from their study that 
the proposed optimized ELM and its variations optimized 
by BBO techniques have potential for IMEP prediction, 
that exhibited some degree of consistency with the 
experimental data. Pak Kin Wong a et al.,13 developed 
prediction model using K-ELM and LS-SVM and then 
compared the performance of these two models. The 
comparative results showed that K-ELM performs better 
regarding prediction error, training time and executing 
time. Mortaza Aghbashlo et al.,14 developed ELM-WT, 
ELM, GP and BP model and also compared the model 
performance.  This model development was carried out 
for obtaining prediction performance of CI engine when 
operated with diesel and biodiesel blends containing 
polymer waste. The result showed that ELM-WT model 
yielded better performance compared to the other models 
and also noticed that this model is much faster along 
with smaller error in training.  Wang Y, and Heydari 
H et al.,16 established an ELM based prediction model 
for isothermal compressibility of long-chain fatty acid 
esters. The developed ELM model predicted isothermal 
compressibility at high accuracy with R2 equal to 1 and 
RMSE equal to 0.0018714.

ELM algorithm performs operation in single epoch 
and it provides good generalisation performance with 
lesser simulation parameters with compact model 
architecture and it overcomes difficulties of overfitting, 
underfitting and local minima problems. When 
developing an ANN model, fixing the network parameters 
requires some prior knowledge. Because the performance 
of the model is sensitive to its simulation parameters 
factors, it takes considerable effort as well as time for 
fixing it through trial and error technique17. Kaloop MR, 
et al.,18 developed prediction model using PSO-ELM for 
estimating the performance of the stabilized aggregate 
bases and then they made a comparison between 
performance of this model with PSO-ANN and K-ELM. 
Compared to other models, the PSO-ELM yields better 
prediction performance in terms of the RMSE, MAPE 
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and coefficient of determination (R2) and also PSO-
ELM yields prediction values distribution trend as same 
as that of observed data. Liu B et al.,19 developed PSO-
ELM that predict carbon particle emissions in china at 
Chongqing. They noticed that PSO-ELM model obtains 
better prediction performance by giving greatest accuracy 
compared to BP and WOA-BP with minimum MSE, RMSE 
and MAPE. Wong KI et al.,20 developed ELM, LS-SVM 
and RBF models for biodiesel engine performance. they 
also employed two optimization algorithm SA and PSO 
to decide about the optimum biodiesel ratio. The results 
showed that ELM based on LT performs much better 
than LS-SVM and RBFNN with/without LT. Also, PSO 
performs better than SA in respect of fitness as well as 
standard deviation with sufficient data processing time. 

From the review of the previous studies, it can 
be noticed that some efforts have been made in the 
development of ELM models with PSO as the optimization 
technique. However, the use of ELM with PSO in the SI 
engine performance and combustion studies are found 
to be limited. Therefore, this study was undertaken to 
develop PSO-ELM hybrid ANN model for the prediction 

of combustion pressure related parameters in the DSI 
engine particularly in the usage of EGB as the fuel.

2.0  Materials and Methods

2.1 Fuel Preparation and Properties
In the present work, a twin spark plug mounted SI 
engine has been used for acquiring data to train and test 
the model. The experiment has been carried out in the 
laboratory using EGB as fuel. A Gasoline (REC-90) and 
ethanol (99.9% pure) was purchased from a local supplier 
and are mixed in appropriate proportions to obtain EGB 
fuel. Ethanol is mixed with gasoline in the ratio of 0:100, 
5:95, 10:90, 15:85 and 20:80 by volume to obtain Pure 
gasoline, EGB5, EGB10, EGB15 and EGB20 respectively. 
To obtain uniform concentration of ethanol and gasoline 
in the mixture, it is agitated by a magnetic stirrer, which is 
rotating at 500-600 rpm for about 5-7 minutes. The below 
Table 1 shows some of the physical, chemical and thermal 
properties all EGBs which have been obtained from the 
literature21.

Properties Gasoline EGB5 EGB10 EGB15 EGB20

Relative density 0.772 0.773 0.775 0.776 0.777

C (% mass) 87.4 87.7 86.7 87.6 87.6

H2 (% mass) 13.3 12.2 13.2 12.3 12.3

O (% mass) 0 1.89 3.97 5.86 7.89

Vapour Pressure (Reid) at 
37.80C (kPa)

53.4 59.3 59.6 58.8 58.3

RON 92 92.8 93.6 95.3 105.6

MON 82 82.4 82.7 83.4 87.9

Stoichiometric AFR 14.57 14.26 13.96 13.36 13

LCV (KJ/kg) 42.61 40.57 39.82 39.41 39

Laminar Burning speed 
(cm/s)

34 34.42 34.88 35.32 35.74

Latent Heat of Vaporization 
(KJ/kg)

305 - - - -

Auto Ignition Temperature 
(0C)

442.8 265 271 281 290

Table 1. Properties of EGB
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2.2 Experimental Setup and Procedure
The data for training and test the model has been 

obtained by conducting experiment on a single cylinder 
twin spark plug mounted gasoline engine. The engine 
has been coupled to water-cooled eddy current type 
dynamometer with crank angle encoder. The simplified 
layout of the engine test rig is presented in the Figure 
1 and its technical specifications are listed in the  
Table 2.

 A water-cooled piezo-electric transducer is mounted 
in the cylinder which is meant for the cylinder pressure 
measurement. The setup provided with necessary 

arrangement to change the CR of the engine. A crank 
angle encoder of high precision is fitted on the on the 
dynamometer to record the crank angle in degrees. The 
sensors for measuring the temperature of inlet air, inlet 
and outlet of engine cooling water, exhaust gas, inlet and 
outlet of calorimeter water are also incorporated in the 
setup. The test rig is also incorporated with instruments 
for measuring the air flow rate, fuel flow rate, engine 
cooling water flow rate and calorimeter water flow rate. 
A programmable Open Electronic Control Unit (ECU) 
regulates throttle position sensor, fuel pump, fuel injector, 
ignition coil, fuel spray nozzle, and trigger sensor etc. 
and generates signals according to the engine operating 
environment. The signals are then made to transmit to 
the software via a high-speed data acquisition device. A 
software called Enginesoft is used for data analysis and 
evaluation.

Water circulation for dynamometer, Piezo electric 
transducer, engine and calorimeter has been provided. 
Engine has been set to 8:1 compression ratio and 240-240 
bTDC spark timing. Switch on the set up and run the 
engine at 1800rpm for 4-5 minutes with no load. Turn ‘on’ 
the computer and run Enginesoft. Load the engine at 
60%, 80% and 100% of full load by gradually opening the 
throttle all the way while keeping the speed at 1800rpm. 
Wait for some time to reach the steady state by observing 
the engine cooling water temperature at each load point 
and log the data in the Enginesoft. Repeat the same 
procedure for other compression ratio 9:1 and 10:1, and 

PT= Pressure transducer
T1= Temperature of cooling liquid at Inlet of the engine
T2 = Temperature of cooling liquid at exit of the engine
T3 = Temperature of liquid at the Inlet of the calorimeter 
T4 = Temperature of liquid at the exit of the calorimeter
T5 = EGT at the Calorimeter inlet
T6 = EGT at the Calorimeter exit

F1= EGB flow rate

F2 = Air flow rate

F3 = Engine cooling liquid flow rate

F4 = calorimeter liquid flow rate 

N = Crank angle encoder

Figure 1.  Simplified layout of engine set-up.

Engine type
Computerized 4- stroke, 
dual fuel VCR with open 

ECU 
Number of cylinders one

Power output 4.5kW@ 1500rpm
Engine cooling fluid Liquid water 

Cylinder size 87.5mm X 110mm
Compression ratio  6:1 to10:1

Piston displacement 
volume 661 cc

Dynamometer 
characteristics 

liquid cooled, eddy current 
type, 185 mm arm length

Engine ignition Battery ignition with Twin 
Spark plug

Table 2. Engine specifications 
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other spark timing of 280-280 bTDC and 200-200 bTDC. 
After the experiment, data has been extracted from the 
Enginesoft and the mean value   and Coefficient Of 

Variation (COV) has been calculated using equation (1) 
and (2) respectively.

	  			    (1)

	  			    (2)

 2.3 Test Conditions
This section lists the different operating conditions at 
which the data from the engine was collected. To collect 
large set of data, it is necessary to carry out the engine 
experiment at larger scale under different operating 
variables i.e blend, load, CR and spark timings. All these 
operating variables has been regulated through open ECU. 
The experiment was done in the laboratory at constant 
speed of 1800rpm. In engine operating condition, 
accuracy of engine data depends on the conditions at 
which data has been collected. Therefore, the data was 
collected under each operating condition when the 
engine operation reached steady state. The steady state 
of the engine operation was observed by maintaining the 
constant engine cooling water temperature. The operating 
conditions are presented in Table 3.

3.0 Modeling Study
An Artificial Neural Network (ANN) is a computational 
framework that draws inspiration from the intricate 
organization and operation of neural networks in the 
human brain. Extreme Learning Machine (ELM) is a 
machine learning algorithm enabling efficient training 
and high-speed predictions. Metaheuristic optimization 
algorithms are intelligent search techniques designed 
to solve complex optimization problems by iteratively 
exploring and navigating the solution space.

3.1 � Extreme Learning Machine (ELM) 
Algorithm 

ELM is a simple and powerful algorithm which is 
extremely fast as it eliminates the iterative procedure 
in comparison to gradient descent method, which 
uses a time-consuming iterative procedure7,24. It finds 
its applications in large scale computing and in real-
time due to its superior prediction accuracy, very fast 
learning speed, high reliability, controllability and good 
generalization capability22,23. ELM algorithm, when 
compared to traditional algorithm, overcomes the 
difficulties of slow training speed, underfitting, overfitting 
and local minima problems. It is based on Empirical Risk 
Minimization (ERM) theory and requires single iteration 
for completing the training program. This algorithm 
uses generalized inverse (Moore- Penrose) operation 
on the hidden layers output matrix for obtaining the 
output weight matrix. This algorithm requires a smaller 
number of simulation parameters which results in less 
involvement of human being to set these parameters. This 
algorithm finds its applications in variety of fields such 
as system identification, control and robotics, computer 
vision, biomedical engineering, etc.25.

The working of ELM algorithm was as follows:
1. � A set of input and output features {xi

μ, yk
μ} were 

taken from the training patterns. 
	 where, μ = 1, 2… N represented the number of 	

	 patterns
	  i = 1, 2...p, denoted the size of input features 
 	 k = 1, 2...r, denoted the size of output features
2. � The values of weights and bias i.e. wji, bjk were 

initialized randomly . 

Fuel 
0% [Pure gasoline], 5% 

[EGB5], 10% [EGB10], 15% 
[EGB15] and 20%[EGB20]

Spark timings 
[0bTDC] 240-240, 280-280 and 200-200.

Compression ratio 8:1.9:1 and 10:1

Load (% of full load) 60%, 80% and 100% 

Speed Constant 1800rpm

Table 3. Engine variables
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3. � The hidden layer output was determined using 
equation (3) for Q number of hidden nodes.

 	 (3)

Where g(x) is usually a sigmoidal activation function. 
4. The output weight matrix was obtained wkj : wkj= 

H†T, 
where H† is the Moore-Penrose generalized inverse 

of the H, and T is the actual output matrix as given in 
equation (4)5.

		   		  (4)

3.2 Optimization Algorithm
For soving real world complicated problems, meta-
heuristic optimisation algorithm becomes a popular 
adaption over traditional algorithms, which are nature 
inspired. Over conventional and deterministic methods, 
the methods of this type have several notable advantages. 
For example, it works efficiently in multi objective 
problems and insufficient or incomplete data that require 
less processing power26. These algorithms use an effective 
integration of exploration and exploitation of the search 
space to arrive intelligently to the best solution. Those 
governing mechanisms are studied from social behavior, 
evolutionary mechanisms and physical phenomena. 

Optimization algorithms randomly initializes 
populations, evaluates each generated population 
for fitness, creates a new set of population using an 
evolutionary procedure. These steps are repeated until 
stopping criterion is reached. Many algorithms of such 
type are developed such as Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), Artificial Bee Colony 
(ABC) etc.  James Kennedy and Russel Eberhart27 
originated PSO algorithm and it attracted researcher’s 

attention because of its simple theory, computational 
effectiveness, and ease of implementation. This algorithm 
makes use of a batch of randomly created particles. These 
particles are set into motion with some velocity and tend 
to approach optimum using multi-dimensional search by 
moving according to simple rule. Every individual particle 
defines its motion by regulating its position relative to best 
global and local positions, denoted respectively by gbest 
and pbest. All particles in the end of each cycle, move 
towards the best solutions by noticing objective function. 

Let u and s be the velocity and positions of every 
particle respectively. The velocity and position of every 
particle ‘i’ in iteration t+1 can be reconditioned using 
equations (5) and (6) 

			   (5) 

			   (6)

where  
ui

t 	 = velocity in iteration t
ui

t+1 	 = velocity in iteration t+1.
si

t 	 = position in iteration t.
si

t+1	 = position in iteration t+1.
�r and 1 and rand 2 are the uniformly distributed 
random variables.
C1 and C2 are the acceleration factors.
p best be the best local position.
g best be the best global position
w be the inertia weight.

3.3 � Exploring Data Characteristics and Pre-
processing Techniques

The large set of data collected from the experiment that 
has been utilized for network training and model testing. 
From the experimental data, nearly randomly selected 
80% data has been used for the purpose of training 
and the rest has been used to test the developed model. 
Normalizing the data within the range of 0 to 1 using 
equation (7) was necessary to guarantee that all inputs 
have an equivalent influence on the development of the 
ANN model.

				    (7)



Suresh Shetty and Chennabasappa Hampali

2379Vol 71 (11) | November 2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels

Where	
X' 	 -   	 Data was normalized
X	 -   	 Original data 
XMax 	-	 Data sets maximum data.

3.4 Model Development Details
In the present study, total six models were developed for 
predicting the cylinder pressure associated parameters. 
The engine operating variables i.e % load, % EGB, CR and 
IGN are considered as the input parameters of the model.

Three set of models are developed to predict three sets 
of parameters as shown in Figures 2. % Load, % blend, 
Compression Ratio (CR) and Spark Timing (IGN) are 
considered as the input parameters for each of the model. 
Model-1 and Model-2 were developed for predicting 
PIMEP and COVIMEP parameters using ELM and PSO-ELM 
respectively and the architecture is depicted in Figure 2a. 
Model-3 and Model-4 were developed for predicting PMCP, 

COVMCP and θMCP using ELM and PSO-ELM respectively 
and the architecture is depicted in Figure 2b. Model-5 and 

Table 4. The model details 

(a) (b)

(c)

Figure 2.  Network structure of models to predict a) IMEP b) MCP c) MRPR parameters.

Model name Learning 
algorithm Output parameter Optimum 

configuration

Model-1 ELM PIMEP and COVIMEP 4:25:2

Model-2 PSO-ELM PIMEP and COVIMEP 4:19:2

Model-3 ELM PMCP, COVMCP and θMCP 4:20:3

Model-4 PSO-ELM PMCP, COVMCP and θMCP 4:16:3

Model-5 ELM PMRPR, COVMRPR and θMRPR 4:25:3

Model-6 PSO-ELM PMRPR, COVMRPR and θMRPR 4:22:3
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Mdel-6 were developed for predicting PMRPR, COVMRPR 

and θMRPR using ELM and PSO-ELM respectively and the 
architecture is depicted in Figure 2c. The details of the 
model with optimum configurations are provided in the 
Table 4. The methodology employed in the present work 
with sequential steps is illustrated in the Figure 3. All the 
simulations were executed on a personal computer in 
MATLAB R2014a environment using customized codes 
with an Intel i5-6200U, 2.3 GHz CPU and 4 GB RAM.

Out of six models, three models were trained by using 
ELM algorithm. i.e. Model-1, Model-3 and Model-5. 
One of the most attractive characteristic features of ELM 
is it requires single epoch to learn and demand fewer 
simulation parameters. The ELM model’s sole simulation 
parameter is the neurons present in the hidden layer. This 
number has been determined through a trial-and-error 
approach, taking into account the highest training error. 
Remaining three models are hybrid models i.e. Model-2, 

Model-4 and Model-6. These are developed by PSO for 
the selection of optimal neurons present in the hidden 
layer of an ELM model. Otherwise this might be selected 
using trial and error basis which demands the experience 
of the model developer. The objective function for PSO 
optimisation is to minimize percentage of MAPE in the 
training data. In this work, the simulation parameters of 
PSO algorithm i.e. ‘C1’ and ‘C2’ acceleration parameters, 
‘w’ inertia weights and population size are set as 1.5, 1.5, 
0.9 and 10 respectively are fixed on the basis of trial and 
error. 100 iterations are set as the stopping criterion for 
PSO algorithm.

All six models with learning algorithm, output 
parameters and optimum configurations are shown in 
Table 4. The model performance was checked during 
training for varying number of neurons in the hidden 
layer and for other simulation parameters of the model. 
Model-1 and Model-2 were developed using ELM and 

Figure 3.  Methodology.
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PSO-ELM algorithm respectively to predict PIMEP and 
COVIMEP parameters along with optimum configurations 
as given in Table 4. It is noticed that from the Table 4 that 
Model-1 and Model-2 showed their best performance 
with neurons in the hidden layer 25 and 19 respectively. 
The Model-3 and Model-4 were developed using ELM and 
PSO-ELM algorithm respectively to predict PMCP, COVMCP 

and θMCP parameters with optimum configurations as 
given in Table 4. It was found that the best performance 
of Model-3 and Model-4 were obtained with optimum 
neurons in the hidden layers 20 and 18 respectively. The 
Model-5 and Model-6 were developed using ELM and 
PSO-ELM respectively to predict PMRPR, COVMRPR and 

θMRPR parameters with optimum configurations as given 
in Table 4. It is seen that the performance of Model-5 and 
Model-6 were achieved best with neurons in the hidden 
layer 25 and 22 respectively. It is important to remember 
that PSO has been used in Model-2, Model-4 and Model-6 
to optimize the number of neurons in the hidden layers 
significantly saving designers effort and time.

4.0 Results and Discussions
The prime objective function of this study was that 
developing a hybrid ANN model by combining PSO 
with ELM and then results this model was compared 
with ELM Model. These models were developed for 
different set of output parameters and for the same set 
of input parameters. % MAPE and MSE were used as 
the performance metrics which were obtained by the 
equation (8) and equation (9) respectively.

	

						       (8)

	  (9)

Where
 yp (i)  is the predicted values of output parameter at 

ith  data point.
ya (i) is the actual values of output parameter at ith  

data point.
N represents the size of data points used.

4.1 IMEP Prediction Model
Model-1 and Model-2 were developed using ELM and 
PSL-ELM to predict PIMEP and COVIMEP respectively. The 
Table 5 and Table 6 presents the performance of Model-1 
and Model-2 respectively. The results of Model-1 were 
obtained for varying neurons in the hidden layers because 
the neurons in the hidden layer was set by manually. From 
the Table 5, It is seen that Model-1 obtained performance 
best at 25 neurons in the hidden layer with a least MAPE 
of 2.33% on the test data using a CPU time of 0.004095 
seconds. From the Table 6, It is seen that Model-2 
obtained least MAPE value of 2.24% on the test data using 
a CPU time of 0.986012 seconds with 19 neurons in the 
hidden layers which was selected optimally by PSO. By 
comparing the performance of Model-1and Model-2, 
Model-2 resulted lowest MSE as well as MAPE for both 
training and testing data. Model-1 resulted extremely 
fast as it takes single epoch for training. Using PSO in 
Model-2, much minimises the dependence of designer’s 
experience and hence minimises the human effort 
involved in the model development. Using PSO in Model-
2, it has resulted compact model network structure with 
high degree of accuracy.

Neurons in the hidden 
layer 15 20 25 30 35 40

MSE Training data 0.00065 0.00050 0.00020 0.00031 0.00045 0.00055

MSE Test data 0.00078 0.00072 0.00033 0.00042 0.00056 0.00061

MAPE % Training data 4.92 3.54 1.77 2.80 3.12 4.95

MAPE % Test data 7.98 6.31 2.33 3.95 4.80 6.46

Executed Time (s) 0.003945 0.004061 0.004095 0.004207 0.004431 0.004662

Table 5. Model-1 Performance
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Table 6. Model-1 Performance

Hidden neurons sample 
size 19

MSE Training data 0.00016

MSE Test data 0.00024

MAPE % Training data 1.002

MAPE % Test data 2.24

Execution Time (s) 0.986012

The predicted values obtained from Model-1 using 
ELM and Model-2 using PSO-ELM were compared 
with actual values of PIMEP in Figure 4 (a) and COVIMEP   
in Figure 4 (b). From both the figures, it is seen that the 

values predicted by Model-2 are much closer to the actual 
values compared to Model-1. This proves that Model-2 is 
superior in developing ANN model for predicting PIMEP 

and COVIMEP parameters. 

4.2 MCP Prediction Model
Two models Model-3 and Model-4 were developed 
using ELM and PSO-ELM respectively to predict three 
parameters i.e. PMCP, COVMCP and θMCP. The Table 7 and 
Table 8 presents the performance results of Model-3 
and Model-4 respectively. It is seen from Table 7 that 
for Model-3, MSE and MAPE both on training and test 
data were decreased with increase in the neurons in the 
hidden layers and were found to be least at 20 neurons 

(a) (b)

Figure 4.  Comparison of prediction performance of Model-1 and Model-2 for a) PIMEP and b) COVIMEP.

Neurons in the hidden layer 5 10 15 20 25 30

MSE Training data 0.00028 0.00021 0.00016 0.00013 0.00011 0.00025

MSE Test data 0.00040 0.00037 0.00032 0.00022 0.00029 0.00034

MAPE % Training data 5.21 5.11 4.48 1.93 3.66 4.38

MAPE % Test data 9.42 8.79 6.88 3.24 4.94 6.18

Executed time (s) 0.004746 0.004711 0.006950 0.008585 0.006908 0.004529

Table 7. Model-3 Performance



Suresh Shetty and Chennabasappa Hampali

2383Vol 71 (11) | November 2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels

(a) (b) 

(c) 

and increased thereafter. It is seen from Table 8 that 
Model-4 achieved best performance at 18 neurons in the 
hidden layer optimally searched by PSO algorithm with 
least MAPE of 3.06% on test data. Based on the time 
needed for training the model, Model-3 takes a CPU time 
of 0.008585 seconds compared a CPU time of 0.998471 
seconds of Model-4. This proves Model-3 to be fast out 
of Model-4 since it is an ELM model which performs in 
single epoch. Nevertheless, Model-4 is also ELM based 
model but it needs more time to train because this model 
incorporated PSO which involves an iterative searching 
procedure.

Table 8. Model-4 Performance

Neurons in the hidden 
layer 18

MSE Training data 0.00010

MSE Test data 0.00019

MAPE % Training data 1.23

MAPE % Test data 3.06

Executed time (s) 0.998471

Figure 5.  Comparison of prediction performance of Model-3 and Model-4 for a) PMCP, b) COVMCP and c) θMCP
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The prediction values of Model-3 and Model-4 were 
compared with the actual values in Figure 5 (a), Figure 5 
(b) and Figure 5 (c) for PMCP, COVMCP and θMCP respectively. 
It is seen that in all the cases, the values predicted by 
Model-4 are nearest to the actual values in comparison 
to Model-3. Hence Model-4 proves to be the best in ANN 
model development for predicting PMCP, COVMCP and θMCP 

parameters.

4.3 MRPR Prediction Model
Two models, Model-5 based on ELM and Model-6 based 
on PSO-ELM were developed to predict three parameters 
i.e. PMRPR, COVMRPR and θMRPR. The Table 9 and Table 

10 presents the performance of Model-5 and Model-6 
respectively. 

In Model-5, neurons in the hidden layer was 
manually set, so the performance results of this model 
were presented for varying neurons in the hidden layer. 
In Model-6, neurons in the hidden layer were optimised 
using PSO. It is seen from Table 9 that for Model-5, the 
lowest MAPE of 1.17 % on training data is obtained for 
25 neurons in the hidden layers by taking a CPU time 
of only 0.005494 seconds. It is seen from Table 10 that 
the Model-6 obtained a best result at 22 neurons selected 
optimally in the hidden layer using PSO algorithm with 
a lowest MAPE of 1.03% on training data with a CPU 

(a) (b)

(c)

Figure 6.  Comparison of Prediction performance of Model-5 and Model-6 for a) PMRPR, b) COVMRPR and c) θMRPR
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Neurons in the hidden 
layer 5 10 15 20 25 30

MSE Training data 0.00065 0.00042 0.00039 0.00034 0.00022 0.00025

MSE Test. Data 0.00082 0.00075 0.00061 0.00048 0.00036 0.00041

MAPE % Training data 5.03 4.27 3.32 2.99 1.17 3.05

MAPE % Test data 8.73 7.23 6.50 4.05 2.80 5.46

Executed time (s) 0.004385 0.004601 0.004925 0.004703 0.005494  0.005826  

Neurons in the hidden layer 22

MSE Training data 0.00019

MSE Test data 0.00030

MAPE. % Training data 1.03

MAPE. % Test data 2.64

Executed Time (s) 0.978515

Table 9. Model-5 Performance

Table 10. Model-6 Performance

time of 0.978515 seconds. Based on the comparison, the 
Model-6 performs best since it has resulted in lowest 
MSE and MAPE (%) for both training and test data. 
With respect to the time, Model-6 consumes more time 

because it involves the PSO algorithm that obtained the 
optimal solution by searching iteratively.

Figure 6(a), Figure 6(b) and Figure (c) presents the 
comparison between the results of Model-5 and Model-6 
respectively for PMRPR, COVMRPR and θMRPR. From the 
figure, it is viewed that, the values predicted by Model-6 
are nearer to the actual values compared to Model-5. 
This shows that Model-6 performs better by taking the 
advantage of PSO in ELM model.

4.4 � Comparison of ELM and PSO-ELM 
models

The performance comparison has been done between 
ELM and PSO-ELM models IMEP, MCP and MRPR 
parameters. The comparison presented in Table 11. 

Models
Output 

parameters
Learning 
algorithm

Hidden 
layer size

MSE 
Training 

data

MSE
Test data

MAPE %
Training 

data

MAPE %
Test data

Executed 
Time (s)

Model-1
PIMEP and 
COVIMEP

ELM 25 0.0002 0.00033 1.77 2.33 0.004095

Model-2
PIMEP and 
COVIMEP

PSO-ELM 19 0.00016 0.00024 1.002 2.24 0.986012

Model-3
PMCP, COVMCP and 

θMCP

ELM 20 0.00013 0.00022 1.93 3.24 0.008585

Model-4
PMCP, COVMCP and 

θMCP

PSO-ELM 18 0.0001 0.00019 1.23 3.06 0.998471

Model-5
PMRPR, COVMRPR 

and θMRPR

ELM 25 0.00022 0.00036 1.17 2.8 0.005494

Model-6
PMRPR, COVMRPR 

and θMRPR

PSO-ELM 22 0.00019 0.0003 1.03 2.64 0.978515

Table 11. Comparison of model’s performance 
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Model-1, Model-3 and Model-5 are models using BP 
learning whereas Model-2, Model-4 and Model-6 are 
ELM based models. 

It is clear from the Table 11 that in all the three 
parameters i.e IMPEP, MCP and MRPR, PSO-ELM 
model performs better than ELM model with respect 
to minimum neurons in the hidden layer, MSE and 
MAPE%. But PSO-ELM takes more execution time than 
ELM in all the parameters as it takes in only single epoch. 
Further, PSO-ELM model is found to be more compact 
and excellent generalization performance with high 
predictive accuracy on training and test data through 
least effort of human being. 

5.0 Conclusions 
The purpose of present study is to develop an efficient 
ELM model by employing PSO for optimizing the 
neurons in the hidden layer. The prediction accuracy of 
this combined PSO-ELM model has been compared with 
base ELM model. Accordingly, the following conclusions 
can be obtained under this modelling study.

•	 PSO-ELM based models have compact network 
structure compared to ELM based models since 
it takes a fewer number of neurons in the hidden 
layers. The optimum model architectures for 
Model-3 and Model-4 are 4:20:3 and 4:16:3 
respectively.   

•	 PSO-ELM based model provides the best possible 
performance with the least error with respect to 
MSE and MAPE % compared to ELM model. The 
MSE and MAPE % on test data for Model-6 (PSO-
ELM) are 0.0003 and 2.64 respectively in contrast 
to 0.00036 and 2.8 for Model-5 (ELM). 

•	 PSO-ELM based Models takes more time as 
compared to ELM as it works on iterative procedure 
to find the optimal solution. The Model-2 (PSO-
ELM) takes 0.986012s as ccompared to 0.004095s 
taken by Model-1 (ELM), since ELM operates 
with single epoch. 
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ABC Artificial Bee Colony LSTM Long Short-Term Memory

ANN Artificial Neural Network LT Logarithmic Transportation 

BBO Biogeography-Based Optimization MAPE Mean Absolute Percentage Error

CAD Crank Angle Degrees MLP Multilayer Perceptron

COV Coefficient of Variation MSE Mean Square Error

EGB05 Ethanol gasoline blend with 5% ethanol PIMEP Indicated Mean Effective Pressure

EGB10 Ethanol gasoline blend with 10% ethanol PMCP Maximum cylinder pressure

EGB15 Ethanol gasoline blend with 15% ethanol PMRPR Maximum rate of pressure rise

EGB20 Ethanol gasoline blend with 20% ethanol PSO Particle Swarm Optimization

ELM Extreme Learning Machine RBF Radial Basis Function

GA Genetic Algorithm RMSE Root Mean Square Error 

GP Genetic Algorithm SA Simulated Annealing

IGN Ignition timing SI Spark Ignition

K-ELM Kernel ELM SVM Support Vector Machine

LM Levenberg-Marquardt TSI Twin spark ignition

LS Least Square WOA-BP Whale Optimization Algorithm 

Nomenclature and Abbreviations


