
Abstract
A steady, two dimensional, incompressible, viscous and conducting fluid flow over a fixed rigid sphere has been considered 
under the effect of magnetic force applied normal to flow direction. The fluid flow occurs in three multiple regions namely 
fluid, porous and fluid region respectively. The governing equations are reduced into linear PDEs in terms of dimensionless 
parameters which intern converted into linear ODEs by similarity transformation method.  The impact of Hartmann number 
and porosity on the fluid flow has been analyzed graphically. It is observed that as the Hartmann number increases for 
fixed porosity, the flow of fluid is well controlled in porous and non-porous regions. Further, as porosity increases for fixed 
Hartmann number, fluid flow over a porous region is observed. Also, diminishes the fluid velocity in the porous region due to 
the suppression of the fluid flow as ‘σ’ increases when magnetic field is fixed to finite constant. The same observation is made 
when the Hartmann number is intensified for the fixed porosity ‘σ’.  

*Author for correspondence

1.0 Introduction
The fluid flow around/through a porous medium has a 
significant applications like geothermal engineering, 
bioremediation, construction engineering, as many more. 
The two major existing areas of utilizing the porous 
sources are conversion and conservation of energy as 
the porous particles are essential for fuels and batteries. 
Fuel is a substance that can react with other substances 
to release energy in the form of heat or to do work. This 
concept was first applied to materials that could release 
chemical energy, but was later applied to other sources of 
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thermal energy such as nuclear energy. Lubrication theory 
is an important application that describes flow of liquids 
or gases where one dimension is noticeably smaller than 
others. Lubricants are used as oil in vehicles and kitchens. 
Lubrication is the use of lubricants to reduce friction and/
or contact between two surfaces. Lubrication research 
is a discipline within the field of tribology. Lubricants 
can be solids, solid/liquid dispersions, liquids, liquid-
liquid dispersions or gases. An important application is 
the lubrication of mechanical components such as fluid 
bearings and mechanical seals. Coatings are another 
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important part of the application and include the 
preparation of thin films, printings, paints and adhesives.

Solar winds, Dynamo theory and most importantly 
the well-known application which is MRI scan are some 
of the greatest important and common areas of study 
in the MHD field. Many practical problems require a 
mechanism that use magnetohydrodynamic effects to 
control the movement of fluids around solid surface. 
Therefore, Hartmann Flow is a classic problem with 
important applications in the design of generators and 
pumps, polymer technology, petroleum refining, also in 
various heat exchangers. The influence of the magnetic 
field on the control of flow processes in different regions 
under different boundary conditions is more familiar. 
Much attention is paid to magnetohydrodynamic study of 
flow of conducting fluids in electric and magnetic fields in 
recent metalworking systems. Hence there is a significant 
interest to study boundary layer flows in presence of 
applied magnetic field.

A steady flow of incompressible electrically 
conducting fluid between two parallel porous disks with 
magnetic strength applied normal to the disc plane was 
studied. The solution was obtained using a perturbation 
method that valid for i) High injection Reynolds number 
and large Hartmann number1 ii) high suction Reynold 
number and arbitrary Hartmann number2 iii) a small 
suction or injection Reynolds number and an arbitrary 
Hartmann number3. In all these cases, it was noticed 
that the external limitation of magnetic field suppresses 
the movement of the fluid. Later extended their study to 
MHD flow between a rotating and stationary disk and 
obtained solutions using perturbation method valid for 
small Reynolds number. They have shown that azimuthal 
component of the velocity was strongly influenced by the 
magnetic field compared to the other two components. 
In particular, the average normal force on a stationary 
disc and torque on a rotating disk increase with 
increasing Hartmann number. The opposite behavior 
of torque is observed on the stationary disk4. The MHD 
flow of electrically conducting, vertically stratified fluid, 
over a nonconducting sphere was considered. Drag was 
calculated for the magnetic and stratification parameters 
and reveals that the drag obtained by the sphere was 
increased by increasing the magnetic and stratification 
parameters5. The study of MHD effect on electrically 

conducting fluid flow over a rigid sphere surrounded 
by porous media was carried out. A stream function 
was used to obtain the analytical solution. They found 
that increasing Hartmann number to decrease the fluid 
velocity6.

The viscous flow of electrically conducting fluid over 
a sphere was studied by considering ambient flow fields 
such as colinear and ambient uniform magnetic field7 
and drawn the conclusion that the difference between 
the flow rate of the surrounding particles is greater than 
the velocity in the Alfvén region and that of the particle 
velocity below the Alfvén velocity. MHD effect on flow 
of 2-D, electrically conducting fluid over a rigid sphere 
surrounded by porous sphere has been analyzed using 
Stokes and Brinkman’s equations8. An exact solution 
was gained by solving the governing equations using 
similarity transformation method. The control of fluid 
flow is observed in both porous and nonporous regions by 
applying magnetic field. The motion of permeable sphere 
in a spherical vessel in occurrence of uniform magnetic 
force was studied9. Within the porous sphere Brinkman 
equation and outside the Stokes equation was used. An 
explicit expressions of stream functions in presence of 
uniform magnetic field were obtained from both internal 
and external flow fields. They noticed that, increase in 
inner porous particle size reduces the drag force. Also, 
increase in magnetic field decreases the drag coefficient. 
Further, for high magnetic field, increase in porosity 
parameter intensify the wall factor. 

Full Magnetohydrodynamic (FMHD) steady flow 
around the circular cylinder was investigated using 
finite difference method10. The magnetic field was 
applied for whole system, with the matching interface 
conditions. It was noted that the magnetic lines bend 
inward with an increase in the Reynolds magnetic 
field, while unbends corresponding to the increase in 
the interaction parameter. Vorticity contour is reduced 
by increasing interaction parameter or kinematic 
Reynolds number. A fully developed flow in a porous 
system under the uniform Lorentz energy action were 
performed11. Lorentz power varies vertically due to low 
fluid fluctuations and special arrangement of magnetic 
and electric fields on the low plate. The viscous and 
incompressible fluid flow for dissimilar viscosities 
was carried out12. The study of Kelvin-Helmholtz’s 
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linear unsteady of the cylinder-shaped boundary was 
performed in the presence of saturated magnetic bed 
structure used in horizontal direction by use of Stokes 
flow model. It was noticed that although the impact of 
porous sources on system is not strong, the horizontal 
electric field has a balancing effect on the system. MHD 
effect on fully developed and incompressible viscous 
electrically conducting fluid flow in a porous medium 
was carried out13. Numerical expressions using Galerkin’s 
method for flow rate and volumetric flow in two cases- 
the Poiseuille and Couette flow were obtained. Impact of 
various parameters such as Hartmann number, porosity 
on the velocity profile were discussed. The flow behavior 
and the effect of magnetic field on porosity of the porous 
annulus, the conductivity of the inner and outer cylinder 
was investigated14. They found that as the Hartmann 
number increases, velocity profile and induced magnetic 
field lines were effectively influenced by the conducted  
cylinders.

Numerical study of viscous incompressible MHD 
flow of fluid and individual temperature on a flexible flat 
cylinder mounted in a porous area with generation of 
internal heat and absorption was studied15 and analyzed 
the effects of physical parameters such as velocity, 
temperature distribution, skin coefficient and Nusselt 
number on the considered flow. The results obtained 
shown that increases the velocity profiles of the fluid 
as the bending parameter increases and decreases as 
the porosity and the magnetic parameter intensifies. 
The temperature of the fluid increases by increasing 
the porous parameter and the magnetic parameter 
and decreases by increasing the Prandtl number. Also 
increase in magnetic field results in increasing the skin 
friction coefficient and Nusselt number. The MHD effect 
on horizontal, viscous and incompressible fluid flow 
through a cylinder composed of sparsely filled non-Darcy 
porous medium on heat convection process including 
the Joule thermal effect generated by magnetic field was 
studied using Quasi-numerical method16. This analysis 
brings out some conclusions- shear stress at the solid 
cylinder surface decreases for increasing the Hartmann 
number and the velocity gradient in the circular cylinder 
is effectively controlled by the Forchhiemer number. 
The impact of Hartmann number on the flow of a two-
dimensional, steady, magneto hydrodynamic fluid in a 

circular cylinder enclosed by porous region was studied17. 
It was observed that velocity profiles were descending in 
a porous and non-porous section as the magnetic field  
increased.

The study dealt with fully developed viscous and 
incompressible fluid flow in a composite channel which 
in turn separated equally into two regions was carried 
out18. The below region was occupied with flexible 
porous layer and the above region was clear. They 
assumed that porosity increases quadratically with the 
width of the porous layer and explored two significant 
and actual suitable methods; (i) Poiseuille Flow and 
(ii) Couette – Poiseuille Flow on a composite region. 
Exact solutions were obtained for fluid velocity and 
skin collision. The analysis of influence of Hartmann 
number on incompressible viscous fluid flow through 
and over porous sphere implanted in porous area for 
lower Reynolds numbers was carried out19. The impact of 
magnetic field on drag, shear stress and stream lines were 
demonstrated for different parameters and was discussed 
through the graphs. Recently the flow of viscous and 
conducting fluid over a slightly deformed sphere by 
applying slip boundary conditions at the surface of the 
sphere was examined and analyzed the effect of some 
dimensionless parameters20.

The work discussed in the above section are related 
to study of impact of magnetic field and the porosity on a 
fluid flow past and through a permeable or impermeable 
sphere and cylinder by considering single and double 
regions. With these literatures an attempt is made to study 
the effect of magnetic field on MHD fluid flow past a solid 
sphere by considering three regions.

2.0 Mathematical Formulation
The considered flow is 2-D, steady, incompressible, 
viscous, conducting fluid over a fixed rigid sphere. The 
rigid sphere of radius a1 surrounded by a fluid section 
of radius a2 bounded by porous sphere of radius a3 and 
the whole model is placed in the infinite fluid region is 
subjected to the transverse magnetic field. Most of the 
fluids used in industrial applications have very small fluid 
conductivity and Reynolds magnetic number. Hence 
the assumption made here is that the induced magnetic 
field is small compare to applied magnetic field. Also, the 
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flow is assumed to be axially symmetric. For the above 
assumptions, the constitutive equations which represents 
the flow in fluid regions (R1 & R3) for i = 1, 3 can be 
written as, 
Continuity equation:   (1)

Modified Stokes equation:
  (2)

In porous region (region R2) the flow is characterized by:
Continuity equation:   (3)

Modified Brinkman equation:

 (4)

In addition, we assumed that, 

We considered the spherical polar co-ordinates (r,θ,ϕ)
with the origin as a center of the sphere. All quantities are 
independent of ϕ since the flow is axially symmetric.  

We introduce the following non-dimensional 
parameters to get dimensionless governing equations:

 (5)

IIn the view of equation of continuity, a stream 
function ψi (r,θ) (for i=1,2,3 for porous and non-porous 
regions) is defined as: 

 (6)

Removing the pressure term from the equations (2) 
and (4) by cross multiplication method, an equation for  
ψi  which is linear partial differential equation of 4th order 
can be get in the form

   (7)

where for fluid, porous and 

fluid regions respectively.    (8)
The boundary conditions - no-slip condition at the 

solid spherical core and interfacial conditions at the 

boundary of the regions R1 & R2 and regions R2 & R3 are 
considered.

No-slip condition at the surface of the rigid sphere is 
given by:

u3 (a1,θ)=0,    0≤θ≤2π   (9)
v3 (a1,θ)=0,    0≤θ≤2π   (10)                
and at the interface of region R1 and R2, the boundary 

conditions are:
u2 (a3,θ)=u1 (a3,θ), 0≤θ≤2π   (11)
v2 (a3,θ)=v1 (a3,θ), 0≤θ≤2π   (12)

  (13)

  (14)

Also, at the interface of region R2 and R3, 
u3 (a2,θ)=u2 (a2,θ), 0≤θ≤2π   (15)
v3 (a2,θ)=v2 (a2,θ), 0≤θ≤2π   (16)

  (17)

  (18)

Since the fluid viscosity is equal to Brinkman viscosity, 
from the equations (14) and (18) we have

p2 (a3,θ)=p1 (a3,θ), 0≤θ≤2π   (19)
p3 (a2,θ)=p2 (a2,θ), 0≤θ≤2π   (20)
Further, the stream function for uniform flow far away 

from the boundary is:

   (21)

3.0 Method of Solution
An equation (21) suggests the similarity solution to 

the equation (7) as:             
for i=1,2,3 (22)

Solving the equation (7) using an equation (22), to 
obtain ordinary differential equation of 4th order as,

(23)

(for Ji
2, refer the equation (8)).                      

The corresponding no-slip and interfacial boundary 
conditions in terms of  are given as:
f3 (a1 )=0,     (24)
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f3
' (a1 )=0     (25)

f2 (a3 )=f1 (a3 )     (26)
f2

' (a3 )=f1
' (a3 )     (27) 

f2 ″ (a3 )=f1
″ (a3 )     (28)

f2
''' (a3 )-σ2 f2

' (a3 )=f1
''' (a3 )    (29)

f3 (a2 )=f2 (a2 )      (30)
f3

' (a2 )=f2
' (a2 )     (31)

f3 
″ (a2 )=f2 

″ (a2 )     (32)
f2

''' (a2 )-σ2 f2
' (a2 )=f3

''' (a2 )    (33)
Also, equation (21) becomes,

 as r→∞    (34)

Let the substitution,  (35)

to reduce ordinary differential equation of 4th order 
into 2nd order. Here suffix i takes the values from 1 to 3.

Substituting the equation (35) in equation (23), we 
get,   (36)

(for  Ji
2, refer the equation (8)).

Further consider the transformation function for gi (r) 
as, 

   (37)
where  the arbitrary function 
Using the equation (37) in equation (36), we get 

(38)

The solution of equation (38) is obtained as, 
  (39)

where  Ci and  Di  are arbitrary constants.  

Hence the equation (37) becomes,
(40)

From the equations (35) and (40), we get 
 

      (41)
The corresponding gained general solution is given as, 

  

      (42)  
From the equation (42) for i = 1, flow in fluid region 

(region R1) is given by:     
 

a3≤r<∞       (43)
and the for i = 2, flow in permeable region (region R2) is 
described by:

 

a2≤r<a_3     (44)
also, for i = 3, flow in fluid region (region R3) takes the 
form:

a1≤r<a2      (45)
                                                                                                                            
In fluid region (region R1) for the fluid flow as  r→∞  

the equation (43) is valid only if  C_1=0. Also, from the 
equation (34) we get  B1=1/2 . Henceforth equation (43) 
becomes:

,a3≤r<∞ (46)

Figure 1. Physical Configuration.
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An equations (44), (45) and (46) are involved with 
arbitrary constants which can be found with help of 
boundary conditions as given in the equations from (24) 
to (33). 

4.0 Results and Discussions
For the present problem, we analysed the impact of porosity 
(σ) and Hartmann number (M) on the considered flow 

Figure 2. Streamlines for different values of  M  with σ=1.

Figure 3. Streamlines for different values of  σ with  M=0.1.

Figure 4. (a). Tangential velocity variations for different values of Hartmann number by fixing porosity. (b). 
Tangential velocity variations for different values of porosity by fixing Hartmann number
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under the assumptions made and associated boundary 
conditions which have been mentioned above.

The influence of Hartmann number M and porosity 
σ on the fluid flow is studied by means of streamlines. 
First, the influence Hartmann number is studied by 
fixing the value of σ. For σ=1 and M=0.5,1 flow of less 
amount of fluid into porous region is noticed because of 
low permeability. Thus, the circulatory movement of fluid 
in the porous region can be seen as shown in Figures 2 
(a) and 2 (b). Again, if Hartmann number is increased 
to M=2 (Figure 2 (c)), it was observed that fluid flow in 
the porous area is still decreased as a result, streamlines 
are past a porous region. Further Hartmann number is 
raised to M=3 the streamlines are appearing past a solid 
core. Because increase in Hartmann number suppresses 
the fluid flow and the same is shown in Figure 2 (d).

The flow bahavior is analysed for various values of 
the porous parameter σ for constant value of  Hartmann 
number M. For negligible Hartmann number the flow 
behavior is like creepy flow. Further, as porosity is 
increased, fluid experiences a opposing force to flow in 
the porous section due to low permeability of the porous 
medium. Hence the streamlines are away from the solid 
core. (Figures 3 (a) to 3 (d)). 

The tangential velocity of the fluid at boundaries (fluid-
porous-fluid) for different values of porosity are analyzed 
along the line θ=π/2 . Fluid with uniform velocity far 
away from boundary flows towards the region of interest. 
For fixed porosity σ=5, as the Hartmann number is 

amplified velocity diminishes gradually from the uniform 
speed and increases in clear fluid region (region R3). In 
this region velocity profile appear in the form of parabola 
which meets the applied boundary conditions (Figure 4 
(a)). The same observation is done for the varying the 
porosity σ by fixing the value of magnetic field M=2. The 
impact of porosity diminishes the fluid velocity in porous 
region which is depicted in the Figure 4 (b).

The variation in normal velocity component is studied 
along the line θ=π/4 in Figures 5 (a) and 5 (b). As the 
Hartmann number increases for fixed porous parameter 
the normal velocity decreases in porous region from 
the uniform speed and increases at the interface and 
again decreases in the fluid region. Also, the variation of 
normal velocity component is studied for different porous 
paramter for constant value of Hartmann number in all 
the three regions. In the porous region normal velocity 
declines from the uniform speed and rises at the interface 
and decreases in fluid region.

5.0 Conclusions
The analysis of magnetohydrodynamic flow finds 
application in MHD power generators, soil science, 
chemical engineering, planetary magnetospheres and 
stellar, plasma flow of aeronautical and electronics. 
Coal-fired MHD systems is one of the major types 
of MHD power generators. Coal MHD systems uses 
the coal as fuel to produce a plasma in which the 

Figure 5. (a). Normal velocity variations for different values of Hartmann number by fixing porosity. (b). Normal 
velocity variations for different values of porosity by fixing Hartmann number
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coal is burned at a temperature sufficient for thermal  
ionization.

In consideration of mentioned applications, an 
analytical solution to an incompressible viscous 
conductive fluid flow around a rigid sphere bounded 
by a fluid medium surrounded by a porous medium 
and the entire model is placed in infinite fluid region is 
presented. The influence of the dimensionless parameters 
like porosity and Hartmann number on the various flow 
characteristics of the considered fluid is analyzed. The 
following conclusions are obtained: 

1.   Increase in Hartmann number for fixed porosity, 
declines the fluid flow in the porous and non-
porous regions. As a result, streamlines past 
a solid core is noticed. Correspondingly fluid 
velocity components also decreased.

2.   As the porosity increases for fixed Hartmann 
number, permeability of porous region is 
decreased. Hence fluid flow in porous section is 
reduced. Thus, streamlines past a porous region 
is noticed and correspondingly fluid velocity 
components also declines in the porous region.
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