
Abstract
Using 3D transmission in a definite cavity with anisotropic and isotropic permeable media rotating at a fixed rotational 
velocity, the Rayleigh-Benard issue for a viscous, unstable, laminar, incompressible fluid heated from below a horizontal layer 
is extended in this paper's research. Seven controlling PDEs from the given physical configuration are similarly transformed 
to produce a system of non-dimensional ODEs. The Rayleigh, Taylor, and Prandtl numbers are examined for their impacts on 
temperature gradient and velocity in both isotropic and anisotropic conditions using the Fourier series approach. It has been 
discussed and determined that the results of the stream function and isotherms on a variety of factors are good.

*Author for correspondence

1.0  Introduction
Due to its numerous important technical and geophysical 
applications, such as chemical catalytic reactors and 
nuclear waste dumps, thermal convection in a fluid-
saturated porous medium has attracted a lot of attention 
recently. Nield and Bejan1 and Ingham and Pop2 have all 
done a lot of study on this topic. The Soret effect, a second-
order fluid phenomenon, becomes an important feature 
when the concentration and temperature gradients are 
appreciably considerable.

The importance of the Soret effect in gas mixtures 
with low and medium molecular masses as well as the 
diffusion of matter brought on by temperature gradients 
are covered by Eckert and Drake3. The Soret effect was 
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investigated by Rudriah and Patil4, although their 
conclusions were limited to open borders.

A magnetic field’s impact on a Darcy–free convection 
of mass and heat from vertical surfaces have been studied 
by Postelnicu6. The impact of this phenomena on free 
convection flow was studied by Anghel et al. Partha et 
al.7  studied the effects of Soret on non-Darcy porous 
media thermal convection from a vertical plate using 
an electrically conducting saturated fluid; both heat 
and solvent dispersion in the medium were taken into 
consideration.

The Soret effect on a Darcy porous media in free 
convection heat and mass transport from a horizontal 
flat plate was studied by Lakshmi Narayana and Murthy8, 
Mansour et al.,9  studied the Soret effect in a square porous 
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cavity heated from below and subjected to a horizontal 
concentration gradient in order to evaluate the diversity 
of solutions caused by thermosolutal convection. Lakshmi 
Narayana and associates investigated the Soret effect in 
a doubly organised horizontal stratum. porous spongy 
media10.

Due to their importance in numerous industrial 
applications, natural convection and chemical reactions 
have also recently garnered a great deal of attention11. 
Investigated the development of chemicals on thermal 
convection in a suction and injection-driven non-linear 
MHD laminar boundary layer flow across a wedge.

Due to its use in isotope separation and in a 
combination of gases with light molecular weight, the 
Soret effect is prominent in fluids with extremely light 
and medium weighted molecules12. According to Alam et 
al., work’s on Soret effects in mixed convective heat and 
mass transfer flow across a semi-infinite vertical porous 
plate13, the soret effect is important for fluids of medium 
molecular mass and shouldn’t be disregarded.

The Soret effect has a significant impact on the flow 
field, according to Srinivasacharya and RamReddy’s14  
examination of a boundary layer study for mixed 
convection over a vertical plate with homogeneous mass 
and heat flux conditions in a non-Darcy micropolar fluid.

In a pair stress liquid layer with linearity and non-
linearity of double diffusive convection15 investigated the 
Soret effect. Through their research, they learned that 
a soret number  greater than zero stabilises the system 
whereas a soret number less than zero leads to instability.

The mantle’s precessional motion causes the fluid core 
to rotate on the axis other than mantle. The basic solid 
body rotation is altered by the differential rotation of the 
core and mantle, resulting in the appearance of internal 
shear layers and jets. Precession and tides both have 
the potential to cause instability in the solution,  in this 
fluid particles in a rotational motion follow streamlines 
elliptically with the previously mentioned weak shear 
zones superimposed. This instability would result in 
smaller eddies and velocity field which is more complex16.

The primary goal of the work presented is to determine 
what changes in characteristics will occur when external 
coriolies force and soret effect are taken into account 
when studying natural convection in a definite geometry 
loaded with porous medium which is anisotropic or 
isotropic.  To our knowledge, there is no mention of 

such a study in the literature mentioned above.  The 
use of science and technology is addressed in a number 
of real-world scenarios, though call for a knowledge of 
the Soret effect in a rotational physical system that is 
crucial to the industrial arena.  The detailed governing 
equations and accompanying Boundary Conditions 
(BCs) of the physical setup are obtained in the next 
sections.  Later, We use Fourier series analysis to invoke 
the solution and comprehend the properties of velocity, 
temperature, and concentration. The final portion focuses 
on numerically computing the solution and analysing the 
physical problem’s outcomes in relation to various non-
dimensional problem parameters.

2.0 Mathematical Formulation
Consideration is given to a non-uniformly heated free 
convection in three dimensions inside a rectangular 
porous box. A homogeneous, incompressible fluid is 
thought to have saturated and an-isotropic effects on 
the porous medium. The box is rectangular and has 
measurements of a and h. The vertical direction is chosen 
as the z-axis, the horizontal box length is chosen as the x 
axis, and the walls of the rectangular cavity are positioned 
at z = (0,h). When using the Boussinesq approximation 
and ignoring inertia considerations, Prandtl-Darcy 
number is thought to be extraordinarily large. The Darcy-
Boussinesq equations’ 3-D model has the following  
form:
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If T is the absolute temperature, T0 +T and T0 are the 
bottom and top walls temperatures of the box. It is believed 
that the box’s walls will transfer heat and are impermeable. 
We get Static conduction if fixed temperature circulation 
does not depend upon x and varies at constant rate on z, 
based on equations (2.1) to (2.7). 
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Where θ and s are variations from  steady concentration 
and temperature. As a result of the flow’s axis symmetry, 
Using the stream function, we represent  ( , )x yψ ψ= by 
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Asterisks serve as a representation for non-
dimensional terms. 
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The governing equation has the following form when 
the aforementioned expressions are introduced into 
equations (2.1)–(2.7):
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The expression for the Rs and Ra  the are as follows
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The equation for the aspect ratio (anisotropy) of 
temperature diffusivity and permeability are given by the 
expression
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The BC’s for heat-conducting walls are completely 
impermeable boundaries is provided as
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3.0 Steady Flow Patterns and 
Linear Stability
Utilising equations with linearised forms (2.11) to 
mention free convection (2.14). Solution these equations’ 
in Fourier series can be expressed as
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Figure 1.  Physical configuration.
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Where , , , , , , , ,n n n n n n nC D G F B S H and nA  are simply 
expressed in σ . To satisfy the BC’s (2.17) .Considering 

0n n n nB C S F= = = = for all x .

By plugging in linearized governing equations, we 
produce differential equations. (3.1) - (3.4) 
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Therefore, we can substitute σ = 0 in equations (3.7) 
and (3.8) for the marginal stability and in order to 
determine (Rac) the critical Rayleigh number, is in terms 
of ( ), , ,ξ η ζ χ  (3.8). smallest eigen value Rac  is provided 
by the above group of equations (3.5) to (3.8) along with 
the boundary conditions (3.9). The typical answer takes 
the form
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At The boundary requirements at Ra ≠ Rac   guarantee 
that  p ≠ q, the non-trivial solution is given by,
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When it comes to  isotropic medium where
ξ η ζ χ= = = , anatical solution of the equations gives 
Rac.  Rac is found numerically in anisotropic case.

•	 The isotropic porous media case: if x x

z z

k

k

κ
κ

=  

then conditions ξ η ζ χ= = =  are satisfied , i.e.  number 
of Thermal diffusivity the parallel and perpendicular 
components are same as permeability have equal amounts 
of the parallel and perpendicular components.

For cases I and II, the following prerequisites must be 
met at r=1
for 1, 2, 3, 4.......m =

2p q mπ− = ,				    (3.18)
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Where 1, 2, 3, 4.......m =  and 1, 2, 3, 4.......n =

the minimum feasible value of the critical Rayleigh 
number  Ra
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The smallest eigen value for an isotropic medium 
relates to 1n =  and 1m =
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0aT →  and 0

h

a
→ 

  
  the channel go toward an 

infinitesimally thin layer of porous material. In this 
situation, the critical Rayleigh number Rac =  4π2  coincides 
with a permeable layers conclusion that is commonly 
accepted Boris17. Critical value calculated using the 
equation (3.21), however, differs from the conclusion 
reached by Sutton18 for a channel with completely 
insulating walls. The solution of equation (3.21) Rac = 8π2 

for a square box  h = a, or one with fully insulating lateral 
walls, is while the result for a rectangular box is Rac = 4π2. 
Because of the heat diffusion over the walls in this 
instance. Conducting a lateral wall box is anticipated to 
result in a higher critical value.

The fluid flow at the start of natural convection 
corresponds to a moderately supercritical Rayleigh 
number. Due to the fact that the conditions in equations 
(3.16) and (3.17) coincide. There are two independent 
answers to the BVP. Additionally, equations (2.11) and 
show this (2.14).

At Ra = Rac, let ψ0, θ0, S0,and v0, are the solutions , then 
the solutions are  

 01 aRψ ξθ= − , v1=  v0 and θ1=  ψ0 linearly independent.

The solution are provided as

𝜉/η 0.125 0.25 0.5 1 2 4 8

0.125 197551 69842 13035 3078 3154 1158 377

0.25 279388 98780 25676 6171 4439 1616 542

0.5 395126 139708 50789 12357 6258 2266 779

1 558811 197595 100775 24728 8837 3191 1119

2 790307 279471 200409 49471 12496 4511 1612

4 1117716 395284 399196 98958 17693 6401 2333

8 1580788 559115 796093 197931 25090 9121 3398

Table 1.  Rac as various combinations of 𝜉 and η. Isotropic cased is represented in the 
principle diagonal
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(1) sin sin sin ;Q s Kx x zθ π π= ⋅ ⋅

(1) cos sin sinQ Kx z xψ π π= ⋅ ⋅     

(1) sin sin sins Q Kx x zπ π= − 		  (3.22)

(2) sin cos sin ;S Kx z xθ π π= ⋅ ⋅
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St
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s

ν π π= − ⋅ ⋅ 		  (3.23)

where and are the amplitude Q and Sconstants. 
Equation (3.22) gives a symmetric flow pattern with  
total number of cells 2n, here the cell count varies based 
on 𝜉. The following equation gives a symmetric flow 
configuration with  total number of cells 2n±1 cells (3.23).

ii. The Anisotropic case: 
Here,  ξ η ζ χ≠ = ≠  The requirement of  the non-

trivial solutions for above  satisfied is . Solution is in the 
form of

For case i).
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Numerous eigenvalues are defined for solutions (i) and 
(ii). In each of the aforementioned cases, let there be two 
least eigenvalues Ra1 and Ra2.

These values are present at n=1. For a given value of  
ξ, η, ζ and χ, Ra1 and Ra2 are computed using form 
equations (3.16) and (3.17). Critical Rayleigh number  
Rac ={Ra1and Ra2}, normally are unequal, which indicates 
that the values for Ra1 and Ra2 are exclusive.

4.0 Conclusion
In the present experiment, natural convection in a three-
dimensional cavity is reduced to two-dimensional double 
diffusive convection with components that diffuse solute 
and temperature in isotropic and asisotropic porous media 
in order to examine the impact of uneven temperature 
changes on natural convection in a three-dimensional 
rectangular cavity.

 It is believed that a rectangular hollow is both heat-
conductive and impermeable. The rectangular cavity 
is heated unevenly from bottom after the addition of 
solutes to produce temperature distributions and linear 
concentration pointing in opposite directions.

•	 Significant wall heating suggests non-dimensional 
characteristics Because Darcy-Prandtl values are 
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large, the inertial and viscous components of the 
momentum equation are disregarded.

•	 The stream function, as the flow Y – axis 
symmetric, linear stability theory is applied to find 
the solutal Ra and critical Ra number.

The associated anisotropic eigen value issue, 
whose eigen value is to be calculated, and the critical 
Rayleigh number Rac that results from its solution in the  
form

Figure 2.  Flow pattern (Stream lines) and Isothermal lines in isotropic case (Ta-varying).

i ii iii

Figure 3.  Flow pattern (Stream lines) and Isothermal lines in isotropic case (ξ varying).

Figure 4.  Flow pattern (Stream lines) and Isothermal lines in anisotropic case (Ta-varying).

(i) (ii) (iii) 
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The output is consistent with the earlier outputs when 
Taylor’s number is zero, it reduces to the Rayleigh number 
discovered in the non-rotating case, when Taylor’s 
number is zero in the isotropic case, as the ristriction

0
h

a
→  it simplifies to the standard form Rac = RS + 4π2  

and Rac = 4π2, and when RS = 0, double duffusing 
component is absent, which is consistent with [11]  the 

i1 ii2 iii3

Figure 5.  Flow pattern (Stream lines) and Isothermal lines in anisotropic case (ξ-varying).

i ii iii

Figure 6.  Flow pattern (Stream lines) and Isothermal lines in anisotropic case (χ-varying).

i ii iii

Figure 7.  Flow pattern (Stream lines) and Isothermal lines in anisotropic case (η-varying).



Characteristic Analysis of Soret and Corolis Forces on a Natural Convection in a Finite Cavity...

Vol 71 (12) | December  2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels2716

Ta=10

8

6
4

2
0

0 5 10 15 20 25 30
100

200

300

400

500

600

700
Rac

Figure 8.  Plot between Racand 𝜉/η (ξ=0.5, Rs=50, 
η=0.125). 

most commonly accepted porous layers result. At 
moderately supercritical Rayleigh numbers, two sets of 
linearly independent solutions are derived, each of which 
displays a different nice steady flow pattern.

Plotting the critical Ra against the permeability to 
thermal diffusivity ratio is shown in Figure 8. The finding 
demonstrates that the relationship between the (Rac) 
critical Rayleigh number and the ratio ξ / η is inverse. 
Rotation has the consequence of making the system 
more unstable since the Solutal Rayleigh number keeps 
increasing along with the growing Taylors number.

The streamlines’ and isothermal lines’ flow patterns:
•	 For both isotropic and anisotropic situations, it 

was discovered that the number of cells rose as the 
Taylor’s number rose, Figures 2 and 4. The coriolis 
force increases along with Taylor’s number which 
increases the total number of revolutions. The 
streamlines and isothermal lines grow as rotation 
increases. The isothermal lines demonstrate how 
rotation in an anisotropic system affects oscillatory 
flow pattern (Figure 7).

•	 With increasing anisotropy in the anisotropic 
case, isotherm lines get flatter (Figures 5 and 6). 
It was discovered that the number of cells reduced 
as aspect ratio and thermal diffusivity increased. 
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β =  Thermal expansion co-efficient

h =  Rectangular channel height

a =  rectangular channel width
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