Investigation on mechanical properties of aluminium 8090 alloy through room temperature rolling

Jump To References Section

Authors

  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jmmf/2021/30120

Keywords:

Tensile test, Vickers test, aluminium lithium alloy.

Abstract

Al-Li alloys are attractive for military and aerospace applications because their properties are superior to those of conventional Al alloys. Their exceptional properties are attributed to the addition of Li into the Al matrix. To develop an improved approach in achieving an excellent combination of high strength and ductility, the solutionized Al-Cu-Li plates were subjected to rolling at room temperatures to a reduction of 60%, 75% and amp; 85%. Rolling at room temperature produces a high density of dislocations because of the suppression of dynamic recovery, such high density of T1 precipitates enable effective dislocation pinning, leading to an increase in strength and ductility. The tensile properties of the age hardening Al 8090 alloy subjected to room temperature rolling (RTR) were investigated. The rolled and aged alloys were analyzed by using TEM, Vickers hardness analysis and tensile test as per ASTM standards. The strength and ductility of Al 8090 alloy of rolled samples are compared to unrolled samples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-04-28

How to Cite

S, H., & S M, D. (2022). Investigation on mechanical properties of aluminium 8090 alloy through room temperature rolling. Journal of Mines, Metals and Fuels, 69(12A), 305–309. https://doi.org/10.18311/jmmf/2021/30120
Received 2022-04-28
Accepted 2022-04-28
Published 2022-04-28

 

References

M S H, Sharma S, and Kumar B, Rev Sev Plast Deform 6 (201766.

Hussain M, Nageswara P, Singh D, Jayaganthan R, and Singh S, (2014): Procedia Eng 75, 129.

Kapoor R, Sarkar A, Yogi R, Shekhawat S K, Samajdar I, and Chakravartty J K, ((2013)): Mater Sci Eng A 560, 404.

Chatterjee A, Sharma G, Sarkar A, Singh J B, and Chakravartty J K, (2012): Mater Sci Eng A 556, 653

Chen Y C, Huang Y Y, Chang C P, and Kao P W, (2005): Acta Mater 51(2003).

Alhamidi A, and Horita Z, ((2015)): Grain Refinement and High Strain Rate Super plasticity in Alumunium 2024 Alloy Processed by High-Pressure Torsion, Elsevier.

Horita Z, and Langdon T G, (2005): Mater Sci Eng A 410– 411.

Tsuji N, Saito Y, Lee S H, and Minamino Y, (2003): Adv Eng Mater 5(2003) 338.

Rajinikanth V, Arora G, Narasaiah N, and Venkateswarlu K, Mater Lett 62 (2008) 301.

Rao P N, Singh D, Jayaganthan R, Rao P N, Singh D, and Jayaganthan R, (2013): Mater Sci Technol 0836.

Joshi A, Yogeshak K, and Jayaganthan R, (2017): Mater Charact 253–271.

Kumar N, Rao P N, Jayaganthan R, and Brokmeier H, (2015): Mater Chem Phys 165, 177.

Singh D, Rao P N, and Jayaganthan R, Int J Miner Metall Mater, 20 (2013) 759–769.

Rangaraju N, Raghuram T, Krishna B V, Rao K P, and Venugopal P, (2005): Mater Sci Eng A

Krishna K S V B R, Chandra Sekhar K, Tejas R, Naga Krishna N, Sivaprasad K, Narayanasamy R, and Venkateswarlu K, (2015): Mater Des 67, 107

R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, (1993): Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168(2), 141–148.

Xue, B.L. Xiao, Z.Y. Ma, (2012): High tensile ductility via enhancedstrain hardening in ultrafine-grained Cu. Mater. Sci. Eng. A 532,106–110.

T. Sakai, H. Miura, (2010): Mechanisms of ultrafine grain formation insevere plastic deformation. Mater. Sci. Form. 638, 98–103.

R.Z. Valiev, T.G. Langdon, (2006): Principles of equalchannel angularpressing as a processing tool for grain refinement. Prog. MaterSci. 51(7), 881–981.

M.K. Pathak, A. Joshi, K.K.S. Mer, (2019): Evaluating tensile propertiesand fracture toughness of Al 2014 alloy processed by differentrolling methods. Mater. Res. Express 6(10), 105012, 6. R. Kapil, A. Joshi, R. Jayaganthan, S. Gairola, R. Verma, (2019): Improvement of fracture toughness of ultra fine grained Al–Li 8090 alloy processed through multi axial forging. Mater. Res. Express 6(8), 085064.

T. Shanmugasundaram, B.S. Murty, V.S. Sarma, (2006): Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scr. Mater. 54(12), 2013–2017.

K.K. Yogesha, N. Kumar, A. Joshi, R. Jayaganthan, S.K. Nath, (2016): A comparative study on tensile and fracture behaviour of Al–Mgalloy processed through cryorolling and cryo groove rolling. Metallogr. Microstruct. Anal. 5(3), 251–263.

S. Gairola, A. Joshi, B. Gangil, P. Rawat, R. Verma, (2019): Correlationof tensile properties and fracture toughness with microstructuralfeatures for Al–Li 8090 alloy processed by cryorolling and post rolledannealing. Trans. Indian Inst. Met. 72, 1743–1755.

N. Nayan et al., (2014): “Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures,” Mater. Des., vol. 58, pp. 445–450.

Y. Shen, (2015): “The influence of cryogenic and heat treatment on the mechanical properties of laser-welded AZ91D, “Int J. Adv Manuf Technol., (170_2015_8332_Article 1.5).

X. Li, K. Lei, P. Song, and X. Liu, (2015): Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment, J. Mater. Eng. Perform, 24, p.3905–3911.

M. Araghchi, H. Mansouri, R. Vafaei, and Y. Guo, (2017): “A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy,” Mater. Sci. Eng. A, (vol. 689, no. January, pp. 48–52).

S.K. Panigrahi, R. Jayaganthan, (2008): Effect of rolling temperatureon microstructure and mechanical properties of 6063 Al alloy. Mater. Sci. Eng. A 492 (1-2), 300–305.

M.K. Pathak, A. Joshi, K.K.S. Mer, R. Jayaganthan, (2019): Mechanical properties and microstructural evolution of bulk UFG Al 2014alloy processed through cryorolling and warm rolling. Acta Metall. Sin. (Engl. Lett.) 32(7), 845–856.

A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, S.K. Nath, (2016): Mechanical properties and microstructural evolution in Al 2014alloy processed through multidirectional cryoforging. J. Mater.Eng. Perform. 25(7), 3031.

S.K. Panigrahi, R. Jayaganthan, (2011): Effect of ageing on microstructureand mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy. J. Alloys Compd. 509(40), 9609–9616.

K.K. Yogesha, A. Joshi, N. Kumar, R. Jayaganthan, (2017): Effect of cryogroove rolling followed by warm rolling (CGW) on the mechanical properties of 5052 Al alloy. Mater. Manuf. Process. 32(12),1336–1344.

A. Joshi, K.K. Yogesha, R. Jayaganthan, (2017): Influence of cryorollingand followed by annealing on high cycle fatigue behaviour ofultrafine grained Al 2014 alloy. Mater. Charact. 127, 253–271.

S.K. Panigrahi, R. Jayaganthan, A comparative study on mechanical properties of Al 7075 alloy processed by rolling at cryogenic temperature and room temperature. Mater. Sci. Form. 584, 734–740.

A. Dhal, S.K. Panigrahi, M.S. (2015): Shunmugam, Influence of annealingon stain hardening behaviour and fracture properties of a cryorolledAl 2014 alloy. Mater. Sci. Eng. A 645, 383–392.

K.K. Yogesha, A. Joshi, R. Jayaganthan, (2017): Fatigue behaviour ofultrafine-grained 5052 Al alloy processed through different rollingmethods. J. Mater. Eng. Perform. 26(6), 2826–2836.

K.K. Yogesha, A. Joshi, A. Raja, R. Jayaganthan, (2019): High-cyclefatigue behaviour of ultrafine grained 5052 Al alloy processedthrough cryo-forging, in Materials Processing Fundamentals 2019 (Springer, Cham), pp. 153–161

A. Hohenwarter, R. Pippan, (2011): Fracture toughness evaluation ofultrafine-grained nickel. Scr. Mater. 64(10), 982–985.

D.B. Miracle, S.L. Donaldson, S.D. Henry, C. Moosbrugger, G.J. Anton, B.R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon,W.W. Scott Jr, (2001): In ASM Handbook, vol 21 (ASM International, Materials Park, OH), pp. 107–119 Magnesium alloy,” vol. 30, no. 2, pp. 19–27.

WANG Yin-min, CHEN Ming-wei, ZHOU Feng-hua, MA En. (2002): High tensile ductility in a nanostructured metal [J]. Nature, 419(6910) 912"915.