Investigation Of Mode II Interlaminar Fracture Toughness Of Silicon-Di-Oxide Filled Glass Fiber Reinforced Epoxy Composites

Jump To References Section

Authors

  • ,IN
  • ,IN
  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/30670

Keywords:

Interlaminar fracture toughness, shear precrack, mode II test method, mode II crack growth.

Abstract

Fracture is a new failure mode due to unstable propagation of a delamination crack growth in composite structures caused by applied load. The efficient characterization of the crack growth in composite structures enhances to estimate the duration of life. This paper mainly focusses on characterization of the fracture toughness of GFRP/epoxy matrix with SiO2 filler form of composites and studying the crack behaviour in the (Mode II) ENF specimen which leads to interlaminar fracture in structural applications. The laminates are arranged to specify the Mode II interlaminar fracture toughness and interlaminar shear strength of GFRP/ epoxy matrix, GFRP/5% wt SiO2, GFRP/10% wt SiO2, using ASTM D7905 M-14 and JIS test methods. The results show that unfilled SiO2 GFRP/epoxy matrix composites are of more facture toughness; the result reveals that the JIS methods in plane shear Mode II test were lower value of fracture toughness than that of ASTM D7905 M-14 Mode II test. As recommend in ASTM standard, ENF (shear pre-cracked) specimen is applicable to measure Mode II fracture toughness.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-07-12

How to Cite

Sriranga, B. K., Kirthan, L. J., Magadum, A. A., & Patil, V. (2022). Investigation Of Mode II Interlaminar Fracture Toughness Of Silicon-Di-Oxide Filled Glass Fiber Reinforced Epoxy Composites. Journal of Mines, Metals and Fuels, 70(3A), 61–67. https://doi.org/10.18311/jmmf/2022/30670

Issue

Section

Articles
Received 2022-07-12
Accepted 2022-07-12
Published 2022-07-12

 

References

Candido GM, Donadon MV, Almeida SFM, Rezende MC. (2014): Fractografia de Composito E-structural Aeronautico Submetido ao Ensaio de Tenacidade a Fracture Interlaminar Mode II. Polímeros - Ciencia Technology; 24:65–71.

Hojo M, Kageyama K, Tanaka K. (1995): Pre standardization study on mode I interlaminar fracture toughness test for CFRP in Japan. Composites; 26:243–55.

Borowski E, Soliman E, Kandil UF, Taha MR. (2015): Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nano tubes. Polymer; 7: 1020–45.

ASTM D5528-13: (2013): Standard test method for mode I interlaminar fracture toughness of unidirectional fiber – reinforced polymer matrix composites. West Conshohocken, PA: ASTM.

ASTM D6671/D6671M-13: (2013): Standard test method for mixed Mode I-Mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. West Conshohocken, PA: ASTM.

ASTM D7905M-14; (2014): Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken, PA: ASTM.

Russell A J and Street K N. (1985): “Moisture and temperature effects on the Mixed Mode Delamination fracture of Unidirectional Graphite/Epoxy”. In: Johnson WS (ed.) Delamination and debonding of materials, ASTM STP 876.West Conshohocken, PA: American Society for Testing and Materials, pp.349-370.

JIS-K-786: (1993): Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics.

Shivakumar K, Panduranga R, Miller S, et al. (2015): “Assessment of mode II fracture tests for Fiber reinforced composite laminates. In: Journal of Reinforced Plastics & Composites, La Jolla, California, USA, 8-10 December.

Friedrich K, Gogeva Y, Fakirov S. (1988): “Thermoplastic impregnated fiber bundles; Manufacturing of laminates and fracture mechanics characterization”. Composite science technology; 33(2); 97-120.

Hunston D L, Moulton R J, Johnston N J, Bascom W D. (1987): “Matrix resin effects in composite delamination mode I fracture aspects”. American Society for Testing and Materials: 74-94.

I.S. Floros, K.I. Tserpes, (2015): ‘Mode I, mode II and mixed mode I+II fracture behaviour of composite bonded joints: Experimental and Numerical simulation’, Composites Part B: Engineering, Vol 78, pp 459 - 468.

Fernandez, De Moura, (2013): Mixed–mode I+II fatigue/ fracture characterization of composite bonded joints using single-leg bending test’ Composites Part A: Applied Science and Manufacturing, Vol.44, pp 63-69.

Matsuda S, Hojo M, Ochiai S. (1997): Mesoscopic fracture mechanism of mode II delamination fatigue crack propagation in interlayer-toughened CFRP. JSME Int J Ser A; 40:423–9.

Carlsson LA, Aksoy A. (1991): Analysis of interleaved end-notched flexure specimen for measuring mode II fracture toughness. Int J Fract; 52: 67–77.

Gillespie Jr JW, Carlsson LA, Pipes RB. (1986): Finite element analysis of the end notched flexure specimen for measuring mode II fracture toughness. Composite Science Technology; 27:177–97.

Carlsson LA, Aksoy A. (1991): Crack tip yield zone estimates in mode II interlaminar fracture of interleaved composites. Eng Fract Mech; 39:525–34.

Benzeggagh ML, Kenane M. (1996): Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus. Compos Science Technology; 56:439–49.

Panduranga Raghu, Shivakumar Kunigal. (2017): Mode-II total fatigue life model for unidirectional IM7/ 8552 carbon/epoxy composite laminate. Int J Fatigue; 94: 97–109.