Microstructure Characteristics and Properties of NiCrMoFeCoAl-30%Cr3C2 HVOF Coating on T22 Boiler Tube Steel

Jump To References Section


  • School of Mechanical Engineering, REVA University Bengaluru
  • School of Mechanical Engineering, REVA University Bengaluru
  • Department of Chemistry, School of Applied Sciences, REVA University Bengaluru
  • School of Mechanical Engineering, REVA University Bengaluru




HVOF Composite Coating, SEM/EDS Technique. Microhardness, Porosity.


In the current investigation, the NiCrMoFeCoAl-30%Cr3C2compositecoating was deposited on T22 baresteel with the HVOF technique. Cr3C2-based coatings offer high hardness, and good corrosion resistance.High-velocity oxy-fuel spray techniquescomprising suspension feedstock have been consideredaparticularly promising substitute for producing more homogeneous and denser Cr3C2coatings with loweras-depositedhigher hardness, surface roughness, and superior quality corrosionresistance.The specimen's microstructure has been characterized by SEM/EDAX and XRD methods. The coating thickness, porosity, microhardness, and coating density have been assessed.



Yin B, Liu G, Zhou H, Chen J and Yan F 2010 Sliding wear behaviour of HVOF-sprayed Cr3C2–NiCr/CeO2 composite coatings at elevated temperature up to 800°C Tribol. Lett., 37 463-475. DOI: https://doi.org/10.1007/s11249-009-9540-5

Liam Reddy, Philip Shipway, Colin Davis and Tanyir Hussain 2017 HVOF and Laser-Cladded Fe-Cr-B Coating in Simulated Biomass Combustion: Microstructure and Fireside Corrosion Oxid. Met. 87 825-835. DOI: https://doi.org/10.1007/s11085-017-9774-9

C.K. Lin, C.C. Berndt, Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, 7–11 June, 1993, p. 561.

Bala, N., Singh, H. and Prakash, S., 2009. High-temperature oxidation studies of cold-sprayed Ni–20Cr and Ni–50Cr coatings on SAE 213-T22 boiler steel. Applied Surface Science, 255(15), pp.6862-6869. DOI: https://doi.org/10.1016/j.apsusc.2009.03.006

W. Tillmann, E. Vogli, I. Baumann, G. Kopp, C. Weihs, J. Therm. Spray Technol. 19 (1-2) (2010) 392. DOI: https://doi.org/10.1007/s11666-009-9418-y

A. Rico, J. Gómez-García, C.J. Múnez, P. Poza, V. Utrilla, Surf. Coat. Technol. 203 (2009) 2307. DOI: https://doi.org/10.1016/j.surfcoat.2009.02.035

Roy, M., Pauschitz, A., Polak, R. and Franek, F., 2006. Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr3C2–25 (Ni20Cr) coatings with conventional and nano-crystalline grains. Tribology International, 39(1), pp.29-38. DOI: https://doi.org/10.1016/j.triboint.2004.11.009

Guilemany J M, Miguel J M, Vizcaino S, Lorenzana C, Delgado J, and Sanchez J, Surf Coat Technol 157 (2002) 207. DOI: https://doi.org/10.1016/S0257-8972(02)00148-2

Seong B G, Hwang S Y, and Kim K Y, Surf Coat Technol 126 (2000) 256. DOI: https://doi.org/10.1016/S0257-8972(00)00523-5

S. Al-Mutairi, M. Hashmi, B. Yilbas, and J. Stokes, Microstructural Characterization of HVOF/Plasma Thermal Spray of Micro/Nano WC-12% Co Powders, Surf. Coat. Technol., 2015, 264, p.175-186 DOI: https://doi.org/10.1016/j.surfcoat.2014.12.050

B. Song, Z. Pala, K. Voisey, and T. Hussain, Gas and Liquid- Fuelled HVOF Spraying of Ni50Cr Coating: Microstructure and High Temperature Oxidation, Surf. Coat. Technol., 2017, 318, p.224-232 DOI: https://doi.org/10.1016/j.surfcoat.2016.07.046

J. Cabral Miramontes, G.K. Pedraza Basulto, C. GaonaTiburcio, P.D.C. Zambrano Robledo, C.A. Poblano Salas, and F. AlmerayaCaldero´n, Coatings Characterization of Ni-Based Alloy Applied by HVOF, Aircr. Eng. Aerosp. Technol., 2018, 90(2), p.336-343 DOI: https://doi.org/10.1108/AEAT-09-2016-0146

S. Saladi, P. Ramana, and P.B. Tailor, Evaluation of Microstructural Features of HVOF Sprayed Ni-20Al Coatings, Trans. Indian Inst. Met., 2018, 71(10), p.2387-2394 DOI: https://doi.org/10.1007/s12666-018-1369-x

S. Tailor, A. Modi, and S. Modi, Thermally Sprayed Thin Copper Coatings by W-HVOF, J. Therm. Spray Technol., 2019, 28(1-2), p 273-282. DOI: https://doi.org/10.1007/s11666-018-0770-7

Y. Fukuda, H. Yamasaki, M. Kawahara, H. Kimura, Proceedings of International Symposium on Advanced Thermal Spray Technology and Applied Coating, Japan High Temperature Society, Osaka, 1988, p.49.

H. Fukutome, H. Shimizu, N. Yamashita, Y. Shimizu, in: A. Ohmori (Ed.), Proceedings of 14th International Thermal Spray Conference, Japan High Temperature Society, Osaka, 1995, p.21.

B.Q. Wang, G.Q. Geng, A.V. Levy, E.R. Buchanan, in: C.C. Berndt (Ed.), Proceedings of the International Thermal Spray Conference and Exposition, ASM International, Materials Park, OH-USA, 1992, p. 735.

P. Sahoo, R. Raghuraman, in: C.C. Berndt, T.F. Bernecki (Eds.), Thermal Spray Coatings: Research, Design and Applications, ASM International, Materials Park, Ohio, USA, 1993, p. 405.

Wang, B.Q. and Luer, K., 1994. The erosion-oxidation behaviour of HVOF Cr3C2-NiCr cermet coating. Wear, 174(1-2), pp.177-185. DOI: https://doi.org/10.1016/0043-1648(94)90100-7

E. Lugscheider, P. Remer, C. Herbst, K. Yushchenko, et al., in: A. Ohmori (Ed.), Proceedings of 14th International Thermal Spray Conference, Japan High Temperature Society, Osaka, 1995, p. 235.

B.Q. Wang, in: T.S. Sudarshan, K.A. Khor, M. Jeandin (Eds.), Surface Modification Technology X, The Institute of Materials, London, 1996, p. 265.

I. Fagoaga, J.L. Viviente, P. Gavin, J.N. Bronte, J. Garcia, J.A. Tagle, Thin Solid Films 317 (1998) 259. DOI: https://doi.org/10.1016/S0040-6090(97)00524-5

Mann, B.S. and Prakash, B., 2000. High temperature friction and wear characteristics of various coating materials for steam valve spindle application. Wear, 240(1-2), pp.223-230. DOI: https://doi.org/10.1016/S0043-1648(00)00390-2

Wang, B.Q. and Shui, Z.R., 2002. The hot erosion behaviour of HVOF chromium carbide-metal cermet coatings sprayed with different powders. Wear, 253(5-6), pp.550-557. DOI: https://doi.org/10.1016/S0043-1648(02)00049-2

C.-J. Li, Y.-Y. Wang, G.-J. Yang, A. Ohmori, K.A. Khor, Mater. Sci. Technol. 20 (2004) 1087. DOI: https://doi.org/10.1179/026708304225019722

D.C. Crawmer, J.D. Krebsbach, W.L. Riggs, in: C.C. Berndt (Ed.), Proceedings of the International Thermal Spray Conference and Exposition, ASM International, Materials Park, Ohio, 1992, p. 127.

L. Russo, M. Dorfmann, in: A. Ohmori (Ed.), Thermal Spraying, Current Status and Future Trends, Japan High Temperature Society, Osaka, 1995, p. 681.

J. Gang-Chang, L. Chang-Jiu, W. Yu-Yue,L.Wen-Ya, Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating, Surf.Coat. Technol. 200(2006)6749–6757. DOI: https://doi.org/10.1016/j.surfcoat.2005.10.005

C.J. Li,G.C.Ji,Y.Y. Wang, K. Sonoya,The dominant mechanism of carbon loss during HVOF spraying of Cr3C2-NiCr,Thin Solid Films 419 (2002) 137–143. DOI: https://doi.org/10.1016/S0040-6090(02)00708-3

J. Rapouch, Degradation of Cr3C2-NiCr coating prepared by the HVOF technique, Kovove Mater.57 (2013)82–86. DOI: https://doi.org/10.2478/kom-2013-0009

Handbook, A.S.M., 1992. Alloy phase diagrams, vol 03. ASM International, Materials Park, p 556 and 1107.

Hillery, R.V., 1986. Coatings for performance retention. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(6), pp.2624-2628. DOI: https://doi.org/10.1116/1.573693




How to Cite

Patil, V. G., Somasundaram, B., Kandaiah, S., & Jagadeeswaran, N. (2023). Microstructure Characteristics and Properties of NiCrMoFeCoAl-30%Cr<sub>3</sub>C<sub>2</sub> HVOF Coating on T22 Boiler Tube Steel. Journal of Mines, Metals and Fuels, 70(10A), 55–60. https://doi.org/10.18311/jmmf/2022/31051