A Critical Review on Nanoparticle Filled Adhesives for Structural Applications

Jump To References Section


  • REVA University, Bangalore
  • Department of Automobile Engineering, Malnad College of Engineering, Hassan, Karnataka
  • Department of Mechanical Engineering, Karnataka




Nanoparticles, Adhesives, Structural Application.


The objective of this review paper is to highlight some of the noteworthy research that has been done on the use of nanoparticles (NPs) to improve the performance of adhesively bonded joints (ABJs) against delamination initiation and propagation. Various nanoparticle applications, such as carbon-based, ceramic-based, and mineral-based nanoparticles, are covered. Interlaminar shear strength, fracture toughness, and fracture energy are the major parameters that have been considered for enhancing FRP delamination and fatigue resistance.The reported results indicatethat the inclusion of NPs in polymeric matrices leads to improvement of various material properties,even though some discrepancies in the results have been noted. Notwithstanding, additional researchis required to address some of the issues that have not yet been tackled.



Cheng, J., & Taheri, F. (2006). A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. International Journal of Solids and Structures, 43(5), 1079-1092. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.020

Cheng, J., Taheri, F., & Han, H. (2006). Strength improvement of a smart adhesive bonded joint system by partially integrated piezoelectric patches. Journal of Adhesion Science and technology, 20(6), 503-518. DOI: https://doi.org/10.1163/156856106777213285

Kinloch, A. J., & Taylor, A. C. J. Materials Sci. Letters, vol. 22, 1439-1442 (2003) Mechanical and Fracture Properties of Epoxy/Inorganic Micro-and Nano-composites.

Korotcenkov, G. “Fundamentals of Sensing Materials Volume 2: Nanostructured Materials.” (2010).

Yue, Z. R., Jiang, W., Wang, L., Gardner, S. D., & Pittman Jr, C. U. (1999). Surface characterization of electrochemically oxidized carbon fibers. Carbon, 37(11), 1785-1796. DOI: https://doi.org/10.1016/S0008-6223(99)00047-0

Meng, L., Fan, D., Zhang, C., Jiang, Z., & Huang, Y. (2013). The effect of oxidation treatment by KClO3/H2SO4 system on intersurface performance of carbon fibers. Applied surface science, 268, 225-230. DOI: https://doi.org/10.1016/j.apsusc.2012.12.066

Yu, S., Tong, M. N., & Critchlow, G. (2010). Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Materials & Design, 31, S126-S129. DOI: https://doi.org/10.1016/j.matdes.2009.11.045

Jojibabu, P., Jagannatham, M., Haridoss, P., Ram, G. J., Deshpande, A. P., &Bakshi, S. R. (2016). Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Composites Part A: Applied Science and Manufacturing, 82, 53-64. DOI: https://doi.org/10.1016/j.compositesa.2015.12.003

Irshidat, M. R., & Al-Saleh, M. H. (2017). Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Materials and Structures, 50(2), 1-11. DOI: https://doi.org/10.1617/s11527-017-1034-6

Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K. M., Jannakoudakis, A., &Docoslis, A. (2008). Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation and Stability, 93(5), 952-967. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.01.033

Otto, D. P. (2007). Synthesis, characterization and pharmaceutical application of selected copolymer nano-particles (Doctoral dissertation, North-West University).

Gude, M. R., Prolongo, S. G., Gómez-del Río, T., & Ureña, A. (2011). Mode-I adhesive fracture energy of carbon fibre composite joints with nanoreinforced epoxy adhesives. International Journal of Adhesion and Adhesives, 31(7), 695-703. DOI: https://doi.org/10.1016/j.ijadhadh.2011.06.016

Bhowmik, S., Benedictus, R., Poulis, J. A., Bonin, H. W., & Bui, V. T. (2009). High-performance nanoadhesive bonding of titanium for aerospace and space applications. International Journal of Adhesion and Adhesives, 29(3), 259-267. DOI: https://doi.org/10.1016/j.ijadhadh.2008.07.002

Hedia, H. S., Allie, L., Ganguli, S., &Aglan, H. (2006). The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints. Engineering fracture mechanics, 73(13), 1826-1832. DOI: https://doi.org/10.1016/j.engfracmech.2006.02.013

Razavi, S. M. J., Ayatollahi, M. R., Giv, A. N., & Khoramishad, H. (2018). Single lap joints bonded with structural adhesives reinforced with a mixture of silica nano-particles and multi walled carbon nanotubes. International Journal of Adhesion and Adhesives, 80, 76-86. DOI: https://doi.org/10.1016/j.ijadhadh.2017.10.007

Fereidoon, A., Kordani, N., Rostamiyan, Y., Ganji, D. D., &Ahangari, M. G. (2010). Effect of carbon nanotubes on adhesion strength of e-glass/epoxy composites and alloy aluminium surface. World Appl Sci J, 9(2), 204-210.

Khan, U., May, P., Porwal, H., Nawaz, K., & Coleman, J. N. (2013). Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS applied materials & interfaces, 5(4), 1423-1428. DOI: https://doi.org/10.1021/am302864f

Mukharjee, B. B., &Barai, S. V. (2014). Influence of nano-silica on the properties of recycled aggregate concrete. Construction and Building Materials, 55, 29-37. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.003

Kinloch, A. J., Lee, J. H., Taylor, A. C., Sprenger, S., Eger, C., & Egan, D. (2003). Toughening structural adhesives via nano-and micro-phase inclusions. The Journal of Adhesion, 79(8-9), 867-873. DOI: https://doi.org/10.1080/00218460309551

Zhou, H., Liu, H. Y., Zhou, H., Zhang, Y., Gao, X., & Mai, Y. W. (2016). On adhesive properties of nano-silica/epoxy bonded single-lap joints. Materials & Design, 95, 212-218. DOI: https://doi.org/10.1016/j.matdes.2016.01.055

Hsieh, T. H., Kinloch, A. J., Taylor, A. C., & Sprenger, S. (2011). The effect of silica nano-particles and carbon nanotubes on the toughness of a thermosetting epoxy polymer. Journal of Applied Polymer Science, 119(4), 2135-2142. DOI: https://doi.org/10.1002/app.32937

Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nano-particles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282. DOI: https://doi.org/10.4103/0975-7406.72127

Al-Harthi, M., Kahraman, R., Yilbas, B., Sunar, M., & Aleem, B. A. (2004). Influence of water immersion on the single-lap shear strength of aluminum joints bonded with aluminum-powder-filled epoxy adhesive. Journal of adhesion science and technology, 18(15-16), 1699-1710. DOI: https://doi.org/10.1163/1568561042708386

Gilbert, E. N., Hayes, B. S., & Seferis, J. C. (2003). Nano alumina modified epoxy based film adhesives. Polymer Engineering & Science, 43(5), 1096-1104. DOI: https://doi.org/10.1002/pen.10093

Hussain, Z., Tahir, S., Mahmood, K., ALIa, A., ARSHAD, M., Ikram, S., ... &Uddassir, Y. (2020). Synthesis and Characterization of Silver Nano-particles With Epoxy Resin Composites. Digest Journal of Nanomaterials and Biostructures, 15(3), 873-883. DOI: https://doi.org/10.15251/DJNB.2020.153.873

NecatiAtaberk The effect of Cu nano-particle adding on to epoxy-based adhesive and adhesion properties. Sci Rep 10, 11038 (2020). https://doi.org/10.1038/s41598-020-68162-4 DOI: https://doi.org/10.1038/s41598-020-68162-4

Prolongo, S. G., Burón, M., Gude, M. R., Chaos-Morán, R., Campo, M., &Ureña, A. (2008). Effects of dispersion techniques of carbon nano-fibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology, 68(13), 2722-2730. DOI: https://doi.org/10.1016/j.compscitech.2008.05.015

Xu, L. R., Li, L., Lukehart, C. M., & Kuai, H. (2007). Mechanical characterization of nano-fiber-reinforced composite adhesives. Journal of nanoscience and nanotechnology, 7(7), 2546-2548. DOI: https://doi.org/10.1166/jnn.2007.433

Prolongo, S. G., Gude, M. R., Sanchez, J., &Ureña, A. (2009). Nanoreinforced epoxy adhesives for aerospace industry. The Journal of Adhesion, 85(4-5), 180-199. DOI: https://doi.org/10.1080/00218460902881766

Gibson, T., Rice, B., Ragland, W., Silverman, E. M., Peng, H., Strong, K. L., & Moon, D. (2005). Formulation and evaluation of carbon nano-fiber-based conductive adhesives. SAMPE-2005.

Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano, 3(12), 3884-3890. DOI: https://doi.org/10.1021/nn9010472

Rafiee, M. A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z. Z., &Koratkar, N. (2010). Fracture and fatigue in graphene nanocomposites. small, 6(2), 179-183. DOI: https://doi.org/10.1002/smll.200901480

Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., & Schulte, K. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology, 97, 90-99. DOI: https://doi.org/10.1016/j.compscitech.2014.03.014

Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., & Taheri, F. (2015). Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Materials & Design (1980-2015), 66, 142-149. DOI: https://doi.org/10.1016/j.matdes.2014.10.047

Walker, L. S., Marotto, V. R., Rafiee, M. A., Koratkar, N., & Corral, E. L. (2011). Toughening in graphene ceramic composites. ACS nano, 5(4), 3182-3190. DOI: https://doi.org/10.1021/nn200319d

Zeng, Y., Liu, H. Y., Mai, Y. W., & Du, X. S. (2012). Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering, 43(1), 90-94. DOI: https://doi.org/10.1016/j.compositesb.2011.04.036

Hsieh, T. H., Kinloch, A. J., Masania, K., Sohn Lee, J., Taylor, A. C., & Sprenger, S. (2010). The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nano-particles. Journal of materials science, 45(5), 1193-1210. DOI: https://doi.org/10.1007/s10853-009-4064-9

Kelkar, A. D., Mohan, R., Bolick, R., &Shendokar, S. (2010). Effect of nano-particles and nano-fibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Materials Science and Engineering: B, 168(1-3), 85-89. DOI: https://doi.org/10.1016/j.mseb.2010.01.015

Zhou, H., Du, X., Liu, H. Y., Zhou, H., Zhang, Y., & Mai, Y. W. (2017). Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves. Composites Science and Technology, 140, 46-53. DOI: https://doi.org/10.1016/j.compscitech.2016.12.018

Yan, N., Xia, H., Zhan, Y., & Fei, G. (2013). New Insights into Fatigue Crack Growth in Graphene Filled Natural Rubber Composites by Microfocus Hard X Ray Beamline Radiation. Macromolecular Materials and Engineering, 298(1), 38-44. DOI: https://doi.org/10.1002/mame.201200044




How to Cite

R, H., B.G., P. K., & B.S., A. (2023). A Critical Review on Nanoparticle Filled Adhesives for Structural Applications. Journal of Mines, Metals and Fuels, 70(10A), 84–89. https://doi.org/10.18311/jmmf/2022/31056