Biodegradable Nano-Cellulose and its Composite Materials for Food Packaging Applications : A Review

Jump To References Section


  • Department of Mechanical Engineering, M S Ramaiah Institute of Technology Bangalore
  • Department of Mechanical Engineering, M S Ramaiah Institute of Technology Bangalore
  • Department of Chemistry, M S Ramaiah Institute of Technology Bangalore



Bagasse is a fibrous material obtained after crushing sugarcane to extract its juice. this sugarcane bagasse can be utilized to produce cellulose nano-crystals for various applications. Researchers have been studying the manufacturing of nano-cellulose-based products and food packaging films. the evolution of environmentally friendly and ecologically balanced food packaging materials has gotten a lot of interest as a potential solution to partially replace the perishable fossil fuel-derived plastic. Nano-cellulose and so its uses have lately received considerable attention across both research and application areas due to their attractive characteristics such as exceptional mechanical properties, larger surface area, rich hydroxyl for alteration, and biological properties with 100 per cent environmental protection. It is widely produced around the world in big quantities. It is a sugar industry waste product. It is most widely employed in the paper industry, although researchers have proposed that various mechanical and chemical treatments can aid in the extraction of cellulosic fibres, pure cellulose, cellulose nano-fibers (CNF), and cellulose nano-crystals (CNC). These extracted components have a wide range of uses in the manufacturing of regenerated cellulosic fibre and composite materials. The extraction processes for these extracted components in food packaging are discussed in this review study, as well as their usual application in composite industries.



A. Kumar, Y. Singh Negi, V. Choudhary, and N. Kant Bhardwaj, “Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro- Waste,” Journal of Materials Physics and Chemistry, vol. 2, no. 1, pp. 1–8, Oct. 2020, doi: 10.12691/jmpc-2-1-1. DOI:

H. A. Silvério, W. P. Flauzino Neto, N. O. Dantas, and D. Pasquini, “Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites,” Industrial Crops and Products, vol. 44, pp. 427–436, Jan. 2013, doi: 10.1016/j.indcrop.2012.10.014. DOI:

S. Yu, J. Sun, Y. Shi, Q. Wang, J. Wu, and J. Liu, “Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products,” Environmental Science and Ecotechnology, vol. 5. Elsevier B.V., Jan. 01, 2021. doi: 10.1016/j.ese.2020.100077. DOI:

M. A. Mahmud and F. R. Anannya, “Sugarcane bagasse - A source of cellulosic fiber for diverse applications,” Heliyon, vol. 7, no. 8. Elsevier Ltd, Aug. 01, 2021. doi: 10.1016/j.heliyon.2021.e07771. DOI:

R. K. Gond, M. K. Gupta, and M. Jawaid, “Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications,” Polymer Composites, vol. 42, no. 10, pp. 5400–5412, Oct. 2021, doi: 10.1002/pc.26232. DOI:

S. Beck-Candanedo, M. Roman, and D. G. Gray, “Effect of reaction conditions on the properties and behaviour of wood cellulose nanocrystal suspensions,” Biomacromolecules, vol. 6, no. 2, pp. 1048–1054, Mar. 2005, doi: 10.1021/bm049300p. DOI:

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose nanocrystals: Chemistry, self- assembly, and applications,” Chemical Reviews, vol. 110, no. 6, pp. 3479–3500, Jun. 2010, doi: 10.1021/cr900339w. DOI:

D. Bondeson, A. Mathew, and K. Oksman, “Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis,” Cellulose, vol. 13, no. 2, pp. 171–180, Apr. 2006, doi: 10.1007/s10570-006-9061-4. DOI:

I. Gan and W. S. Chow, “Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review,” Food Packaging and Shelf Life, vol. 17. Elsevier Ltd, pp. 150–161, Sep. 01, 2018. doi: 10.1016/j.fpsl.2018.06.012. DOI:

N. el Miri et al., “Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films,” Carbohydrate Polymers, vol. 129, pp. 156–167, Sep. 2015, doi: 10.1016/j.carbpol.2015.04.051. DOI:

H. M. C. de Azeredo, “Nanocomposites for food packaging applications,” Food Research International, vol. 42, no. 9. pp. 1240–1253, Nov. 2009. doi: 10.1016/j.foodres.2009.03.019. DOI:

M. el Achaby et al., “Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse International Journal of Biological Macromolecules, vol.96, pp.340–352, Mar. 2017, doi:10.1016/j.ijbiomac.2016.12.040. DOI:

T. v. Duncan, “Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors,” Journal of Colloid and Interface Science, vol. 363, no. 1, pp. 1–24, Nov. 2011, doi: 10.1016/j.jcis.2011.07.017. DOI:

P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan, “Nanocellulose: Extraction and application,” Carbon Resources Conversion, vol.1. No.1. KeAi Publishing Communications Ltd., pp. 32–43, Apr. 01, 2018. doi: 10.1016/j.crcon.2018.05.004. DOI:

A. Subhedar, S. Bhadauria, S. Ahankari, and H. Kargarzadeh, “Nanocellulose in biomedical and biosensing applications: A review,” International Journal of Biological Macromolecules, vol. 166. Elsevier B.V., pp. 587–600, Jan. 01, 2021. doi: 10.1016/j.ijbiomac.2020.10.217. DOI:

A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, “Commercial application of cellulose nano-composites – A review,” Biotechnology Reports, vol. 21. Elsevier B.V., Mar. 01, 2019. doi: 10.1016/j.btre.2019.e00316. DOI:

W. T. Wulandari, A. Rochliadi, and I. M. Arcana, “Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse,” in IOP Conference Series: Materials Science and Engineering, Feb. 2016, vol. 107, no. 1. doi: 10.1088/1757- 899X/107/1/012045. DOI:

J. Jiang, Y. Zhu, and F. Jiang, “Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives,” Carbohydrate Polymers, vol. 267, Sep. 2021, doi: 10.1016/j.carbpol.2021.118188. DOI:

H. M. C. Azeredo, M. F. Rosa, and L. H. C. Mattoso, “Nanocellulose in bio-based food packaging applications,” Industrial Crops and Products, vol. 97, pp. 664–671, Mar. 2017, doi: 10.1016/j.indcrop.2016.03.013. DOI:

H. M. C. de Azeredo, “Antimicrobial nanostructures in food packaging,” Trends in Food Science and Technology, vol. 30, no. 1. pp. 56–69, Mar. 2013. doi: 10.1016/j.tifs.2012.11.006. DOI:

M. Carbone, D. T. Donia, G. Sabbatella, and R. Antiochia, “Silver nanoparticles in polymeric matrices for fresh food packaging,” Journal of King Saud University - Science, vol. 28, no. 4. Elsevier B.V., pp. 273–279, Oct. 01, 2016. doi: 10.1016/j.jksus.2016.05.004. DOI:

A. N. Adilah, B. Jamilah, M. A. Noranizan, and Z. A. N. Hanani, “Utilization of mango peel extracts on the biodegradable films for active packaging,” Food Packaging and Shelf Life, vol. 16, pp. 1–7, Jun. 2018, doi: 10.1016/j.fpsl.2018.01.006. DOI:

F. Li, P. Biagioni, M. Bollani, A. Maccagnan, and L. Piergiovanni, “Multi-functional coating of cellulose nanocrystals for flexible packaging applications,” Cellulose, vol. 20, no. 5, pp. 2491–2504, Oct. 2013, doi: 10.1007/s10570-013-0015-3. DOI:

E. F. Cerqueira, C. A. R. P. Baptista, and D. R. Mulinari, “Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites,” in Procedia Engineering, 2011, vol. 10, pp. 2046–2051. doi: 10.1016/j.proeng.2011.04.339. DOI:

A. Sharma, T. Mandal, and S. Goswami, “Fabrication of cellulose acetate nanocomposite films with lignocelluosic nanofiber filler for superior effect on thermal, mechanical and optical properties,” Nano-Structures and Nano-Objects, vol. 25, Feb. 2021, doi: 10.1016/j.nanoso.2020.100642. DOI:

N. Yin, S. yan Chen, Y. meng Cao, H. ping Wang, and Q. kai Wu, “Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites,” Chinese Journal of Polymer Science (English Edition), vol. 35, no. 3, pp. 354–364, Mar. 2017, doi: 10.1007/s10118-017-1903-z. DOI:

M. Rajinipriya, M. Nagalakshmaiah, M. Robert, and S. Elkoun, “Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review,” ACS Sustainable Chemistry and Engineering, vol. 6, no. 3. American Chemical Society, pp. 2807–2828, Mar. 05, 2018. doi: 10.1021/acssuschemeng.7b03437. DOI:

A. Fernández, D. Cava, M. J. Ocio, and J. M. Lagarón, “Perspectives for biocatalysts in food packaging,” Trends in Food Science and Technology, vol. 19, no. 4, pp. 198–206, Apr. 2008, doi: 10.1016/j.tifs.2007.12.004. DOI:




How to Cite

Halagalimath, R., R, J., & Kottom, N. (2023). Biodegradable Nano-Cellulose and its Composite Materials for Food Packaging Applications : A Review. Journal of Mines, Metals and Fuels, 70(10A), 104–111.