Triply Periodic Minimal Surfaces: An Overview of Their Features, Failure Mechanisms, and Applications

Jump To References Section

Authors

  • ,IN
  • Department of Mechanical Engineering, M S Ramaiah Institute of Technology Bangalore. ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31230

Abstract

Additive manufacturing has made it possible to create complicated geometries and lattice structures, and it is also the greatest approach for producing nature-inspired cellular structures. Triply periodic minimal surface (TPMS) cellular structure, which is additively built, has a high strength-to-weight ratio, making it useful in various applications, including structural weight reduction, biomedical, aerospace, and impact absorption. TPMS is a natural-inspired surface with zero mean curvature and a local minimal area. The type of structure, loading mechanism, unit cell characteristics, and relative density significantly affect the structure’s strength and stiffness. As a result, this article will cover the history, classification, characteristics, manufacturing processes, failure mechanism, and applications of the TPMS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-15

How to Cite

Gupta, A., & Babu L, S. (2023). Triply Periodic Minimal Surfaces: An Overview of Their Features, Failure Mechanisms, and Applications. Journal of Mines, Metals and Fuels, 70(10A), 211–221. https://doi.org/10.18311/jmmf/2022/31230

 

References

Abou-Ali, A. M., Al-Ketan, O., Lee, D. W., Rowshan, R., & Abu Al-Rub, R. K. (2020). Mechanical behaviour of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Materials & Design, 196, 109100. https:/ /doi.org/10.1016/J.MATDES.2020.109100 DOI: https://doi.org/10.1016/j.matdes.2020.109100

Abueidda, D. W., Bakir, M., Abu Al-Rub, R. K., Bergström, J. S., Sobh, N. A., & Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 122, 255–267. https://doi.org/10.1016/J.MATDES.2017.03.018 DOI: https://doi.org/10.1016/j.matdes.2017.03.018

Abueidda, D. W., Elhebeary, M., Shiang, C. S. (Andrew), Pang, S., Abu Al-Rub, R. K., & Jasiuk, I. M. (2019). Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials & Design,165, 107597. https://doi.org/10.1016/J.MATDES.2019.107597 DOI: https://doi.org/10.1016/j.matdes.2019.107597

Al-Ketan, O., & Abu Al-Rub, R. K. (2019). Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 21(10), 1900524. https:// doi.org/10.1002/ADEM.201900524 DOI: https://doi.org/10.1002/adem.201900524

Al-Ketan, O., Rowshan, R., & Abu Al-Rub, R. K. (2018). Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 19, 167–183. https://doi.org/10.1016/J.ADDMA. 2017.12.006 DOI: https://doi.org/10.1016/j.addma.2017.12.006

Ashby, M. F. (2000). Metal foams/ : a design guide. 251.

Ashby, M. F. (2005a). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,364(1838), 15–30. https://doi.org/10.1098/ RSTA.2005.1678

Ashby, M. F. (2005b). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30. https://doi.org/10.1098/ RSTA.2005.1678 DOI: https://doi.org/10.1098/rsta.2005.1678

Barba, D., Alabort, E., & Reed, R. C. (2019). Synthetic bone: Design by additive manufacturing. Acta Biomaterialia, 97, 637–656. https://doi.org/10.1016/ J.ACTBIO.2019.07.049 DOI: https://doi.org/10.1016/j.actbio.2019.07.049

Benedetti, M., du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606. https://doi.org/10.1016/J. MSER. 2021.100606 DOI: https://doi.org/10.1016/j.mser.2021.100606

Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., & Zadpoor, A. A. (2017a). Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomaterialia, 53, 572–584. https://doi.org/10.1016/J.ACTBIO.2017.02.024

Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., & Zadpoor, A. A. (2017b). Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomaterialia, 53, 572–584. https://doi.org/10.1016/J.ACTBIO.2017.02.024 DOI: https://doi.org/10.1016/j.actbio.2017.02.024

Brennan-Craddock, J., Brackett, D., Wildman, R., & Hague, R. (2012). The design of impact absorbing structures for additive manufacture. Journal of Physics: Conference Series,382(1). https://doi.org/ 10.1088/1742-6596/382/1/012042 DOI: https://doi.org/10.1088/1742-6596/382/1/012042

Burton, H. E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., Shepherd, D. E. T., Attallah, M. M., Grover, L. M., & Cox, S. C. (2019). The design of additively manufactured lattices to increase the functionality of medical implants. Materials Science & Engineering. C, Materials for Biological Applications, 94, 901–908. https://doi.org/ 10.1016/J.MSEC.2018.10.052 DOI: https://doi.org/10.1016/j.msec.2018.10.052

Chen, H., Han, Q., Wang, C., Liu, Y., Chen, B., & Wang, J. (2020). Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Frontiers in Bioengineering and Biotechnology, 8, 609. https:// doi.org/10.3389/FBIOE.2020.00609/BIBTEX DOI: https://doi.org/10.3389/fbioe.2020.00609

Chen, H. Y., Kwon, Y., & Thornton, K. (2009). Multifunctionality of three-dimensional self-assembled composite structure. Scripta Materialia, 1(61), 52–55. https://doi.org/10.1016/J.SCRIPTAMAT.2009.03.006 DOI: https://doi.org/10.1016/j.scriptamat.2009.03.006

du Plessis, A., Razavi, S. M. J., Benedetti, M., Murchio, S., Leary, M., Watson, M., Bhate, D., & Berto, F. (2022a). Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science,125, 100918. https:// doi.org/10.1016/J.PMATSCI.2021.100918

du Plessis, A., Razavi, S. M. J., Benedetti, M., Murchio, S., Leary, M., Watson, M., Bhate, D., & Berto, F. (2022b). Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 125, 100918. https:// doi.org/10.1016/J.PMATSCI.2021.100918 DOI: https://doi.org/10.1016/j.pmatsci.2021.100918

Echeta, I., Feng, X., Dutton, B., Leach, R., & Piano, S. (2019). Review of defects in lattice structures manufactured by powder bed fusion. The International Journal of Advanced Manufacturing Technology 2019 106:5, 106(5), 2649–2668. https://doi.org/10.1007/ S00170-019-04753-4 DOI: https://doi.org/10.1007/s00170-019-04753-4

Feng Lu, W., Zhang, L., Feih, S., Daynes, S., Chang, S., Yu Wang, M., & Wei, J. (2018). Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. 23, 505–515. DOI: https://doi.org/10.1016/j.addma.2018.08.007

Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. https://doi.org/10.1007/ S11665-014-0958-Z/FIGURES/9 DOI: https://doi.org/10.1007/s11665-014-0958-z

Gandy, P. J. F., & Klinowski, J. (2002). Nodal Surface Approximations to the Zero Equipotential Surfaces for Cubic Lattices. Journal of Mathematical Chemistry 200231:1, 31(1), 1–16. https://doi.org/10.1023/ A:1015444012997 DOI: https://doi.org/10.1023/A:1015444012997

Grasso, M., & Colosimo, B. M. (n.d.). Process defects and in situ monitoring methods in metal powder bed fusion: A review Grasso, MARCO LUIGI; Colosimo, BIANCA MARIA Process Defects and In-situ Monitoring Methods in Metal Powder Bed Fusion: a Review. https://doi.org/10.1088/1361-6501/aa5c4f DOI: https://doi.org/10.1088/1361-6501/aa5c4f

Guo, N., & Leu, M. C. (2013a). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/S11465-013-0248-8

Guo, N., & Leu, M. C. (2013b). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/S11465-013-0248-8 DOI: https://doi.org/10.1007/s11465-013-0248-8

Han, S. C., Lee, J. W., & Kang, K. (2015). A New Type of Low Density Material: Shellular. Advanced Materials, 27(37), 5506–5511. https://doi.org/10.1002/ ADMA.201501546 DOI: https://doi.org/10.1002/adma.201501546

Infinite periodic minimal surfaces without self-intersections - NASA Technical Reports Server (NTRS). (n.d.-a). Retrieved May 10, 2022, from https:/ /ntrs.nasa.gov/citations/19700020472

Infinite periodic minimal surfaces without self-intersections - NASA Technical Reports Server (NTRS). (n.d.-b). Retrieved May 10, 2022, from https:/ /ntrs.nasa.gov/citations/19700020472

ISO - ISO 13314:2011 - Mechanical testing of metals – Ductility testing – Compression test for porous and cellular metals. (n.d.). Retrieved May 10, 2022, from https://www.iso.org/standard/53669.html

Khan, S. Z., Masood, S. H., Ibrahim, E., & Ahmad, Z. (2019). Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling. Https:// Doi.Org/10.1080/17452759.2019.1615750, 14(4), 360– 370. https://doi.org/10.1080/17452759.2019.1615750 DOI: https://doi.org/10.1080/17452759.2019.1615750

Lai, M., Kulak, A. N., Law, D., Zhang, Z., Meldrum, F. C., & Riley, D. J. (2007). Profiting from nature: macroporous copper with superior mechanical properties. Chemical Communications, 34, 3547–3549. https://doi.org/10.1039/B707469G DOI: https://doi.org/10.1039/b707469g

Leary, M., Mazur, M., Williams, H., Yang, E., Alghamdi, A., Lozanovski, B., Zhang, X., Shidid, D., Farahbod-Sternahl, L., Witt, G., Kelbassa, I., Choong, P., Qian, M., & Brandt, M. (2018). Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Materials and Design, 157, 179–199. https://doi.org/ 10.1016/J.MATDES.2018.06.010 DOI: https://doi.org/10.1016/j.matdes.2018.06.010

Medical Implants Market Size | Industry Forecast by 2027. (n.d.). Retrieved May 10, 2022, from https:// www.alliedmarketresearch.com/medical-implants-market

Miralbes, R., Ranz, D., Pascual, F. J., Zouzias, D., & Maza, M. (2020). Characterization of additively manufactured triply periodic minimal surface structures under compressive loading. Https://Doi.Org/10.1080/ 15376494.2020.1842948. https://doi.org/10.1080/ 15376494.2020.1842948

Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2017). Experimental investigation of time-dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process. Materials Letters, C(193), 58–62. https://doi.org/ 10.1016/J.MATLET.2017.01.104 DOI: https://doi.org/10.1016/j.matlet.2017.01.104

Multi-Jet Fluid Deposition In 3D Printing: A Review. (n.d.). Retrieved May 10, 2022, from https:// www.jetir.org/view?paper=JETIRA006021

Park, S. Y., Kim, K. S., AlMangour, B., Grzesiak, D., & Lee, K. A. (2021). Effect of unit cell topology on the tensile loading responses of additive manufactured CoCrMo triply periodic minimal surface sheet lattices. Materials & Design, 206, 109778. https://doi.org/ 10.1016/J.MATDES.2021.109778 DOI: https://doi.org/10.1016/j.matdes.2021.109778

Paufler, P. (1990). L. L. Gibson, M. F. Ashby. Cellular solids. Structure & properties. Pergamon Press, Oxford 1988. IX + 357 p. Preis $ 40.00. ISBN 0-08-036607-4. Crystal Research and Technology, 25(9), 1038–1038. https://doi.org/10.1002/CRAT.2170250912 DOI: https://doi.org/10.1002/crat.2170250912

Pham, D. T., & Dimov, S. S. (2001). Rapid Manufacturing. https://doi.org/10.1007/978-1-4471-0703-3 DOI: https://doi.org/10.1007/978-1-4471-0703-3

Poladian, L., Wickham, S., Lee, K., & Large, M. C. J. (2008). Iridescence from photonic crystals and its suppression in butterfly scales. Journal of The Royal Society Interface, 6(SUPPL. 2). https://doi.org/10.1098/ RSIF.2008.0353.FOCUS DOI: https://doi.org/10.1098/rsif.2008.0353.focus

Rapid Prototyping - Selective Laser Sintering (SLS). (n.d.). Retrieved May 10, 2022, from https:// www.custompartnet.com/wu/selective-laser-sintering

Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J. (2016). Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials and Design, 95, 518–533. https://doi.org/10.1016/J.MATDES. 2016.01.146 DOI: https://doi.org/10.1016/j.matdes.2016.01.146

Riemer, A., Leuders, S., Thöne, M., Richard, H. A., Tröster, T., & Niendorf, T. (2014). On the fatigue crack growth behaviour in 316L stainless steel manufactured by selective laser melting. Engineering Fracture Mechanics,120, 15–25. https://doi.org/10.1016/ J.ENGFRACMECH.2014.03.008 DOI: https://doi.org/10.1016/j.engfracmech.2014.03.008

Schmidt, M., Merklein, M., Bourell, D., Dimitrov, D., Hausotte, T., Wegener, K., Overmeyer, L., Vollertsen, F., & Levy, G. N. (2017). Laser based additive manufacturing in industry and academia. CIRP Annals - Manufacturing Technology,2(66), 561–583. https:// doi.org/10.1016/J.CIRP.2017.05.011 DOI: https://doi.org/10.1016/j.cirp.2017.05.011

Schwarz, H. A. 1843-1921. (2005). Gesammelte mathematische Abhandlungen, von H. A. Schwarz. http://name.umdl.umich.edu/AAT0607.0001.001

Sharma, D., & Hiremath, S. S. (2021). Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Https://Doi.Org/10.1080/ 15376494.2021.1948151. https://doi.org/10.1080/ 15376494.2021.1948151

Standard Terminology for Additive Manufacturing Technologies,. (n.d.). Retrieved May 10, 2022, from https://www.astm.org/f2792-12.html

Tafazoli, M., & Nouri, M. D. (2020). Investigation of the experimental, statistical and optimisation of 3D printed lattice core sandwich panel energy absorber with novel configuration using response surface method. Https://Doi.Org/10.1080/ 13588265.2020.1786913, 1–12. https://doi.org/10.1080/ 13588265.2020.1786913

Torquato, S., & Donev, A. (2004). Minimal surfaces and multifunctionality. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2047), 1849–1856. https://doi.org/10.1098/ RSPA.2003.1269 DOI: https://doi.org/10.1098/rspa.2003.1269

Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt, T., & Greil, P. (2014). Additive Manufacturing of Ceramic-Based Materials. Advanced Engineering Materials,16(6), 729–754. https://doi.org/10.1002/ADEM.201400097 DOI: https://doi.org/10.1002/adem.201400097

Utela, B., Storti, D., Anderson, R., & Ganter, M. (2008). A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes, 10, 96–104. https://doi.org/10.1016/j.jmapro.2009.03.002 DOI: https://doi.org/10.1016/j.jmapro.2009.03.002

Wang, L., Lau, J., Thomas, E. L., & Boyce, M. C. (2011). Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Advanced Materials, 23(13), 1524–1529. https://doi.org/10.1002/ ADMA.201003956 DOI: https://doi.org/10.1002/adma.201003956

Wang, X., Wang, C., Zhou, X., Zhang, M., Zhang, P., & Wang, L. (2020). Innovative design and additive manufacturing of regenerative cooling thermal protection system based on the triply periodic minimal surface porous structure. CMES - Computer Modeling in Engineering and Sciences, 123(2), 495–508. https:// doi.org/10.32604/CMES.2020.09778 DOI: https://doi.org/10.32604/cmes.2020.09778

Yan, C., Hao, L., Hussein, A., Young, P., & Raymont, D. (2014). Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials and Design, 55, 533–541. https:// doi.org/10.1016/J.MATDES.2013.10.027 DOI: https://doi.org/10.1016/j.matdes.2013.10.027

Zhou, J., Shrotriya, P., & Soboyejo, W. O. (2004). On the deformation of aluminum lattice block structures: from struts to structures. Mechanics of Materials, 36(8), 723–737. https://doi.org/10.1016/ J.MECHMAT.2003.08.007 DOI: https://doi.org/10.1016/j.mechmat.2003.08.007