Process Mineralogy Characteristics and Titanium Preconcentration of Panxi Vanadium-Titanium Magnetite Tailings

Jump To References Section

Authors

  • Sichuan Engineering Laboratory of Non- Metallic Mineral Powder Modification and High Value Utilization, South West University of Science and Technology, Mianyang 621010 ,CN
  • Sichuan Engineering Laboratory of Non- Metallic Mineral Powder Modification and High Value Utilization, South West University of Science and Technology, Mianyang 621010; ,CN
  • Institute of Multipurpose Uitlization of Mineral Resources, Chengdu 610041 ,CN
  • Institute of Multipurpose Uitlization of Mineral Resources, Chengdu 610041 ,CN
  • Sichuan Engineering Laboratory of Non- Metallic Mineral Powder Modification and High Value Utilization, South West University of Science and Technology, Mianyang 621010 ,CN
  • Sichuan Engineering Laboratory of Non- Metallic Mineral Powder Modification and High Value Utilization, South West University of Science and Technology, Mianyang 621010 ,CN
  • Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, Shaoguan 512026, ,CN
  • Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, Shaoguan 512026, ,CN

Keywords:

Vanadium-titanium magnetite; process mineralogy; embedding characteristics; preconcentration; gravity beneficiation

Abstract

Chemical and mineralogical characteristics of Panxi vanadium–titanium magnetite tailings are studied to beneficiate the contained ilmenite. A pilot study using a spiral chute to precocentrate the tailings, combined with table enrichment, is carried out. The aluminosilicate content of the tailings is high and the TiO2 content is only 10.28%. Titanium mainly existed in the form of ilmenite and titanomagnetite, which accounted for 78.02% of total titanium. Although most ilmenite is dissociated, a small amount is embedded in the gangue. More than 90% of the gangue comprised titanaugite, plagioclase, and serpentine. After sorting the sample by spiral chute, a large amount of gangue is discarded and a coarse concentrate with a TiO2 grade of 23.54% is obtained. This is enriched using a table to obtain a final concentrate of 36.85% TiO2 with an overall recovery of 71.75%. Titanium pre-enrichment is achieved.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-10-20

How to Cite

Peng, Y., Xiao, J., Zhang, Y., Chen, C., Ding, W., Wu, Q., Liang, G., & Huang, W. (2022). Process Mineralogy Characteristics and Titanium Preconcentration of Panxi Vanadium-Titanium Magnetite Tailings. Journal of Mines, Metals and Fuels, 67(6), 332338. Retrieved from https://informaticsjournals.com/index.php/jmmf/article/view/31569

Issue

Section

Articles

 

References

Gao, Z.X., Cheng, G.J., Xue, X.X., Yang, H., Duan, P.N. (2018): Property Investigations of Low-Grade Vanadium-Titanium Magnetite Pellets with Different MgO Contents Steel Research International, 89(17005436).

Tang, W.D., Yang, S.T., Cheng, G.J., Gao, Z.X., Yang, H., Xue, X.X. (2018): Effect of TiO2 on the Sintering Behaviour of Chromium-Bearing Vanadium-Titanium Magnetite Minerals, 8(2637).

He, Z.W., Yue, H.R., Xue, X.X. (2018): Study of the High Temperature Metallurgical Properties of On-Site Samples with Vanadium-Titanium Magnetite Transactions of the Indian Institute of Metals, 71(8): 2001-2013.

Humphrey, D.S., Pang, C. L., Chen, Q., Thornton, G. (2019): Electron induced nanoscale engineering of rutile TiO2 surfaces Nanotechnology, 30(0253032).

Li, R., Liu, T., Zhang, Y.M., Huang, J. (2019): Mechanism of Novel K2SO4/KCl Composite Roasting Additive for Strengthening Vanadium Extraction from Vanadium- Titanium Magnetite Concentrate Minerals, 2018,8(42610).

Shi, L.Y., Zhen, Y.L., Chen, D.S., Wang, L.N., Qi, T. (2018): Carbothermic Reduction of Vanadium-Titanium Magnetite in Molten NaOHIsij International, 58(4):627-632.

Sui, Y.L., Guo, Y.F., Jiang, T., Qiu, G.Z. (2017): Sticking behaviour of vanadium titano-magnetite oxidised pellets during gas-based reduction and its prevention Ironmaking & Steelmaking, 44(3):185-192.

Tang, W.D., Xue, X.X., Yang, S.T., Zhang, L.H., Huang, Z. (2018): Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of highchromium vanadium-titanium magnetite, International Journal of Minerals Metallurgy and Materials, 25(8):871-880.

Xu, C.B., Zhang, Y.M., Liu, T., Huang, J. (2017): Characterization and Pre-Concentration of Low-Grade Vanadium-Titanium Magnetite Ore Minerals, 7(1378).

Pan, F., Zhu, Q.S., Du, Z., Sun, H.Y. (2016): Oxidation Kinetics, Structural Changes and Element Migration during Oxidation Process of Vanadium-titanium Magnetite Ore, Journal of Iron and Steel Research International, 23(11): 1160-1167.

Ai, M.X., Xie, Y.G., Xu, D.G., Gui, W.H., Yang, C.H. (2018): Data-driven flotation reagent changing evaluation via union distribution analysis of bubble size and shape. Canadian Journal of Chemical Engineering, 96(12): 2616-2626.

Yao, W., Li, M.L., Cui, R., Jiang, X.K., Jiang, H.Q., Deng, X.L., Li, Y., Zhou, S. (2018): Flotation Behaviour and Mechanism of Anglesite with Salicyl Hydroxamic Acid as Collector. Jom, 70(12):2813-2818.

Altinkayaa, P., Mäkinenb, J., Kinnunenb, P., Kolehmainena, E., Haapalainena, M., Lundström, M. (2018): Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching. Minerals Engineering, 129:47-53.

Wan, H., Qu, J.P., He, T.S., Bu, X.Z., Yang, W., Li, H. A (2018): New Concept on High-Calcium Flotation Wastewater Reuse Minerals, 8(49611).

Sievwright, R.H., Wilkinson, J.J., O'Neill, H. St.C., Berry, A.J. (2017): Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate meltsContributions to Mineralogy and Petrology, 172(628).

Li, W., Fu, G.Q., Chu, M.S., Zhui, M.Y. (2018): Influence of V2O5 Content on the Gas-Based Direct Reduction of Hongge Vanadium Titanomagnetite Pellets with Simulated Shaft Furnace Gases. Jom, 70(1):76-80.

Yang, J.Y., Tang, Y., Yang, K., Ashaki, Rouff b, Elzinga, E.J., Huang, J.H. (2014): Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. Journal of Hazardous Materials, 264:498-504.

Yang, X.Q., Liang, T., Guo, X.C., Zheng, Y., Zhou, Y., Chen, Z.H. (2018): Mineralogy and stable isotope constraints on the genesis of submarine volcanic-hosted Beizhan iron deposit in the Western Tianshan, NW China Geological Journal, 53(2): 329-344.

Wang, W.Q., Zhu, Y.G., Zhang S.Q., Deng, J., Huang, Y., Yan, W. (2017): Flotation Behaviours of Perovskite, Titanaugite, and Magnesium Aluminate Spinel Using Octyl Hydroxamic Acid as the Collector Minerals, 7(1348).

Tian, J., Xu, L.H., Yang, Y.H., Liu, J., Zeng, X.B., Deng, W. (2017): Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors International Journal of Mineral Processing, 166:102-107.

Xiao, W., Zhao, H.B., Qin, W.Q., Qiu, G.Z., Wang, J. (2018): Adsorption Mechanism of Pb2+ Activator for the Flotation of Rutile Minerals, 8(2667).

Gibson, C.E., Hansuld, R., Kelebek, S., Aghamirian, M. (2017): Behaviour of ilmenite as a gangue mineral in the benzohydroxamic flotation of a complex pyrochlore-bearing ore. Minerals Engineering, 109:98-108.

Akbaria, H., Noaparasta, M. M., Shafaeia, S. Z., Hajatib, A., Aghazadeha, S., Akbari, H. (2018): A Beneficiation Study on a Low Grade Iron Ore by Gravity and Magnetic Separation. Russian Journal of Non-Ferrous Metals, 59(4): 353-363.

Chaurasia, R.C., Sahu1, D., Nikkam, S. (2018): Cleaning of Coal by Multi Gravity Separator. Transactions of the Indian Institute of Metals, 71(6):1487-1495.

Mmadnejad, S.M., Noaparast, M., Hosseini, S., Aghazadeh, S., Mousavinezhad, S., Hosseini, F. (2018): Physical Methods and Flotation Practice in the Beneficiation of a Low Grade Tungsten-Bearing Scheelite Ore. Russian Journal of Non-Ferrous Metals, 59(1):6-15.